# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/xgboost/model.py
#' @include xgboost_default.R
#' @include xgboost_utils.R
#' @import R6
#' @import sagemaker.core
#' @import sagemaker.mlcore
#' @import lgr
#' @title XGBoostPredictor Class
#' @description Predictor for inference against XGBoost Endpoints.
#' This is able to serialize Python lists, dictionaries, and numpy arrays to xgb.DMatrix
#' for XGBoost inference.
#' @export
XGBoostPredictor = R6Class("XGBoostPredictor",
inherit = sagemaker.mlcore::Predictor,
public = list(
#' @description Initialize an ``XGBoostPredictor``.
#' @param endpoint_name (str): The name of the endpoint to perform inference on.
#' @param sagemaker_session (sagemaker.session.Session): Session object which manages
#' interactions with Amazon SageMaker APIs and any other AWS services needed.
#' If not specified, the estimator creates one using the default AWS configuration
#' chain.
#' @param serializer (sagemaker.serializers.BaseSerializer): Optional. Default
#' serializes input data to LibSVM format
#' @param deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
#' Default parses the response from text/csv to a Python list.
initialize = function(endpoint_name,
sagemaker_session=NULL,
serializer=LibSVMSerializer$new(),
deserializer=CSVDeserializer$new()){
super$initialize(
endpoint_name,
sagemaker_session,
serializer=serializer,
deserializer=deserializer
)
}
)
)
#' @title XGBoostModel Class
#' @description An XGBoost SageMaker ``Model`` that can be deployed to a SageMaker ``Endpoint``.
#' @export
XGBoostModel = R6Class("XGBoostModel",
inherit = sagemaker.mlcore::FrameworkModel,
public = list(
#' @description Initialize an XGBoostModel.
#' @param model_data (str): The S3 location of a SageMaker model data ``.tar.gz`` file.
#' @param role (str): An AWS IAM role (either name or full ARN). The Amazon SageMaker training
#' jobs and APIs that create Amazon SageMaker endpoints use this role to access
#' training data and model artifacts. After the endpoint is created, the inference
#' code might use the IAM role, if it needs to access an AWS resource.
#' @param entry_point (str): Path (absolute or relative) to the Python source file which should
#' be executed as the entry point to model hosting. If ``source_dir`` is specified,
#' then ``entry_point`` must point to a file located at the root of ``source_dir``.
#' @param image_uri (str): A Docker image URI (default: None). If not specified, a default image
#' for XGBoost is be used.
#' @param py_version (str): Python version you want to use for executing your model training code
#' (default: 'py3').
#' @param framework_version (str): XGBoost version you want to use for executing your model
#' training code.
#' @param predictor_cls (callable[str, sagemaker.session.Session]): A function to call to create
#' a predictor with an endpoint name and SageMaker ``Session``.
#' If specified, ``deploy()`` returns the result of invoking this function on the
#' created endpoint name.
#' @param model_server_workers (int): Optional. The number of worker processes used by the
#' inference server. If None, server will use one worker per vCPU.
#' @param ... : Keyword arguments passed to the ``FrameworkModel`` initializer.
initialize = function(model_data,
role,
entry_point,
framework_version,
image_uri=NULL,
py_version="py3",
predictor_cls=XGBoostPredictor,
model_server_workers=NULL,
...){
super$initialize(
model_data=model_data, image_uri=image_uri, role=role, entry_point=entry_point, predictor_cls=predictor_cls, ...
)
self$py_version = py_version
self$framework_version = framework_version
self$model_server_workers = model_server_workers
attr(self, "_framework_name") = XGBOOST_NAME
validate_py_version(py_version)
validate_framework_version(framework_version)
},
#' @description Return a container definition with framework configuration
#' set in model environment variables.
#' @param instance_type (str): The EC2 instance type to deploy this Model to.
#' This parameter is unused because XGBoost supports only CPU.
#' @param accelerator_type (str): The Elastic Inference accelerator type to deploy to the
#' instance for loading and making inferences to the model. This parameter is
#' unused because accelerator types are not supported by XGBoostModel.
#' @return dict[str, str]: A container definition object usable with the CreateModel API.
prepare_container_def = function(instance_type=NULL,
accelerator_type=NULL){
deploy_image = self$image_uri
if (is.null(deploy_image)){
deploy_image = self$serving_image_uri(
self$sagemaker_session$paws_region_name, instance_type
)
}
deploy_key_prefix = model_code_key_prefix(self$key_prefix, self$name, deploy_image)
private$.upload_code(deploy_key_prefix)
deploy_env = list(self$env)
deploy_env = modifyList(deploy_env, private$.framework_env_vars())
if (!is.null(self$model_server_workers))
deploy_env[[toupper(mode_parameters$MODEL_SERVER_WORKERS_PARAM_NAME)]] = as.character(self$model_server_workers)
model_data = (
if (self$enable_network_isolation()) self$repacked_model_data else self$model_data
)
return(container_def(deploy_image, self$model_data, deploy_env))
},
#' @description Create a URI for the serving image.
#' @param region_name (str): AWS region where the image is uploaded.
#' @param instance_type (str): SageMaker instance type. Must be a CPU instance type.
#' @return str: The appropriate image URI based on the given parameters.
serving_image_uri = function(region_name,
instance_type){
if(missing(region_name)) region_name = self$sagemaker_session$paws_region_name
return(sagemaker.core::ImageUris$new()$retrieve(
attr(self, "_framework_name"),
region_name,
version=self$framework_version,
py_version=self$py_version,
instance_type=instance_type,
image_scope="inference"
)
)
}
),
lock_objects = F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.