# NOTE: This code has been modified from AWS Sagemaker Python: https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/test_fm.py
context("factorization machines")
library(sagemaker.core)
library(sagemaker.common)
ROLE = "myrole"
INSTANCE_COUNT = 1
INSTANCE_TYPE = "ml.c4.xlarge"
NUM_FACTORS = 3
PREDICTOR_TYPE = "regressor"
COMMON_TRAIN_ARGS = list(
"role"= ROLE,
"instance_count"= INSTANCE_COUNT,
"instance_type"= INSTANCE_TYPE
)
ALL_REQ_ARGS = c(
list("num_factors"= NUM_FACTORS, "predictor_type"= PREDICTOR_TYPE), COMMON_TRAIN_ARGS
)
REGION = "us-west-2"
BUCKET_NAME = "Some-Bucket"
DESCRIBE_TRAINING_JOB_RESULT = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://bucket/model.tar.gz"))
ENDPOINT_DESC = list("EndpointConfigName"= "test-endpoint")
ENDPOINT_CONFIG_DESC = list("ProductionVariants"= list(list("ModelName"= "model-1"), list("ModelName"= "model-2")))
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
sagemaker_client <- Mock$new()
sagemaker_client$.call_args("describe_training_job", DESCRIBE_TRAINING_JOB_RESULT)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sagemaker_client$.call_args("describe_training_job", DESCRIBE_TRAINING_JOB_RESULT)
sagemaker_client$.call_args("describe_training_job", DESCRIBE_TRAINING_JOB_RESULT)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
sms$.call_args("default_bucket", BUCKET_NAME)
sms$sagemaker <- sagemaker_client
sms$s3 <- s3_client
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-fm-dummy"))
sms$.call_args("create_model", "sagemaker-fm")
sms$.call_args("endpoint_from_production_variants", "sagemaker-fm-endpoint")
sms$.call_args("logs_for_job")
return(sms)
}
test_that("test init required positional", {
fm = FactorizationMachines$new(
"myrole", 1, "ml.c4.xlarge", 3, "regressor", sagemaker_session=sagemaker_session()
)
expect_equal(fm$role, "myrole")
expect_equal(fm$instance_count, 1)
expect_equal(fm$instance_type, "ml.c4.xlarge")
expect_equal(fm$num_factors, 3)
expect_equal(fm$predictor_type, "regressor")
})
test_that("test init required named", {
fm_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm = do.call(FactorizationMachines$new, fm_args)
expect_equal(fm$role, COMMON_TRAIN_ARGS$role)
expect_equal(fm$instance_count, COMMON_TRAIN_ARGS$instance_count)
expect_equal(fm$instance_type, COMMON_TRAIN_ARGS$instance_type)
expect_equal(fm$num_factors, ALL_REQ_ARGS$num_factors)
expect_equal(fm$predictor_type, ALL_REQ_ARGS$predictor_type)
})
test_that("test all hyperparameters", {
fm_args = c(
sagemaker_session=sagemaker_session(),
epochs=2,
clip_gradient=1e2,
eps=0.001,
rescale_grad=2.2,
bias_lr=0.01,
linear_lr=0.002,
factors_lr=0.0003,
bias_wd=0.0004,
linear_wd=1.01,
factors_wd=1.002,
bias_init_method="uniform",
bias_init_scale=0.1,
bias_init_sigma=0.05,
bias_init_value=2.002,
linear_init_method="constant",
linear_init_scale=0.02,
linear_init_sigma=0.003,
linear_init_value=1.0,
factors_init_method="normal",
factors_init_scale=1.101,
factors_init_sigma=1.202,
factors_init_value=1.303,
ALL_REQ_ARGS)
fm = do.call(FactorizationMachines$new, fm_args)
expect_equal(fm$hyperparameters(), list(
num_factors=ALL_REQ_ARGS$num_factors,
predictor_type=ALL_REQ_ARGS$predictor_type,
epochs=2,
clip_gradient=1e2,
eps=0.001,
rescale_grad=2.2,
bias_lr=0.01,
linear_lr=0.002,
factors_lr=0.0003,
bias_wd=0.0004,
linear_wd=1.01,
factors_wd=1.002,
bias_init_method="uniform",
bias_init_scale=0.1,
bias_init_sigma=0.05,
bias_init_value=2.002,
linear_init_method="constant",
linear_init_scale=0.02,
linear_init_sigma=0.003,
linear_init_value=1.0,
factors_init_method="normal",
factors_init_scale=1.101,
factors_init_sigma=1.202,
factors_init_value=1.303
)
)
})
test_that("test image", {
fm_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm = do.call(FactorizationMachines$new, fm_args)
expect_equal(fm$training_image_uri(), ImageUris$new()$retrieve("factorization-machines", REGION))
})
test_that("test required hyper parameters type", {
fm_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm_args$num_factors = "Dummy"
expect_error(do.call(FactorizationMachines$new, fm_args), "Could not convert object 'Dummy' to integer")
fm_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm_args$predictor_type = "Dummy"
expect_error(do.call(FactorizationMachines$new, fm_args), 'Invalid hyperparameter value Dummy for predictor_type. Expecting: Value "binary_classifier" or "regressor"')
})
test_that("test optional hyper parameters type", {
optional_hyper_parameters = list(
"epochs"="string",
"clip_gradient"="string",
"eps"="string",
"rescale_grad"="string",
"bias_lr"="string",
"linear_lr"="string",
"factors_lr"="string",
"bias_wd"="string",
"linear_wd"="string",
"factors_wd"="string",
"bias_init_method"=0,
"bias_init_scale"="string",
"bias_init_sigma"="string",
"bias_init_value"="string",
"linear_init_method"=0,
"linear_init_scale"="string",
"linear_init_sigma"="string",
"linear_init_value"="string",
"factors_init_method"=0,
"factors_init_scale"="string",
"factors_init_sigma"="string",
"factors_init_value"="string"
)
for(i in seq_along(optional_hyper_parameters)){
fm_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS, optional_hyper_parameters[i])
expect_error(do.call(FactorizationMachines$new, fm_args))
}
})
test_that("test optional hyper parameters type", {
optional_hyper_parameters = list(
"epochs"=0,
"bias_lr"=-1,
"linear_lr"=-1,
"factors_lr"=-1,
"bias_wd"=-1,
"linear_wd"=-1,
"factors_wd"=-1,
"bias_init_method"="string",
"bias_init_scale"=-1,
"bias_init_sigma"=-1,
"linear_init_method"="string",
"linear_init_scale"=-1,
"linear_init_sigma"=-1,
"factors_init_method"="string",
"factors_init_scale"=-1,
"factors_init_sigma"=-1
)
for(i in seq_along(optional_hyper_parameters)){
fm_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS, optional_hyper_parameters[i])
expect_error(do.call(FactorizationMachines$new, fm_args))
}
})
PREFIX = "prefix"
FEATURE_DIM = 10
MINI_BATCH_SIZE = 200
test_that("test call fit", {
fm_args = c(base_job_name="fm", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm = do.call(FactorizationMachines$new, fm_args)
data = RecordSet$new(
sprintf("s3://%s/%s", BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
fm$fit(data, MINI_BATCH_SIZE)
expect_equal(fm$latest_training_job, "sagemaker-fm-dummy")
})
test_that("test prepare for training wrong type mini batch size", {
fm_args = c(base_job_name="fm", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm = do.call(FactorizationMachines$new, fm_args)
data = RecordSet$new(
sprintf("s3://%s/%s", BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
expect_error(fm$.__enclos_env__$private$.prepare_for_training(data, "some"))
})
test_that("test prepare for training wrong value mini batch size", {
fm_args = c(base_job_name="fm", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm = do.call(FactorizationMachines$new, fm_args)
data = RecordSet$new(
sprintf("s3://%s/%s", BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
expect_error(fm$.__enclos_env__$private$.prepare_for_training(data, 0))
})
test_that("test model image", {
fm_args = c(base_job_name="fm", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm = do.call(FactorizationMachines$new, fm_args)
data = RecordSet$new(
sprintf("s3://%s/%s", BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
fm$fit(data, MINI_BATCH_SIZE)
model = fm$create_model()
expect_equal(model$image_uri, ImageUris$new()$retrieve("factorization-machines", REGION))
})
test_that("test predictor type", {
fm_args = c(base_job_name="fm", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
fm = do.call(FactorizationMachines$new, fm_args)
data = RecordSet$new(
sprintf("s3://%s/%s", BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
fm$fit(data, MINI_BATCH_SIZE)
model = fm$create_model()
predictor = model$deploy(1, INSTANCE_TYPE)
expect_true(inherits(predictor, "FactorizationMachinesPredictor"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.