# NOTE: This code has been modified from AWS Sagemaker Python: https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/test_ipinsights.py
context("ipinsights")
library(sagemaker.core)
library(sagemaker.common)
ROLE = "myrole"
INSTANCE_COUNT = 1
INSTANCE_TYPE = "ml.c4.xlarge"
# Required algorithm hyperparameters
NUM_ENTITY_VECTORS = 10000
VECTOR_DIM = 128
COMMON_TRAIN_ARGS = list(
"role"= ROLE,
"instance_count"= INSTANCE_COUNT,
"instance_type"= INSTANCE_TYPE
)
ALL_REQ_ARGS = c(list("num_entity_vectors"= NUM_ENTITY_VECTORS, "vector_dim"= VECTOR_DIM), COMMON_TRAIN_ARGS)
REGION = "us-west-2"
BUCKET_NAME = "Some-Bucket"
DESCRIBE_TRAINING_JOB_RESULT = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://bucket/model.tar.gz"))
ENDPOINT_DESC = list("EndpointConfigName"= "test-endpoint")
ENDPOINT_CONFIG_DESC = list("ProductionVariants"= list(list("ModelName"= "model-1"), list("ModelName"= "model-2")))
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
sagemaker_client <- Mock$new()
sagemaker_client$.call_args("describe_training_job", DESCRIBE_TRAINING_JOB_RESULT)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sagemaker_client$.call_args("describe_training_job", DESCRIBE_TRAINING_JOB_RESULT)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
sms$sagemaker <- sagemaker_client
sms$s3 <- s3_client
sms$.call_args("default_bucket", BUCKET_NAME)
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-ipinsight-dummy"))
sms$.call_args("create_model", "sagemaker-ipinsight")
sms$.call_args("endpoint_from_production_variants", "sagemaker-ipinsight-endpoint")
sms$.call_args("logs_for_job")
return(sms)
}
test_that("test init required positional", {
ipinsights = IPInsights$new(
ROLE,
INSTANCE_COUNT,
INSTANCE_TYPE,
NUM_ENTITY_VECTORS,
VECTOR_DIM,
sagemaker_session=sagemaker_session()
)
expect_equal(ipinsights$role, COMMON_TRAIN_ARGS$role)
expect_equal(ipinsights$instance_count, INSTANCE_COUNT)
expect_equal(ipinsights$instance_type, COMMON_TRAIN_ARGS$instance_type)
expect_equal(ipinsights$num_entity_vectors, NUM_ENTITY_VECTORS)
expect_equal(ipinsights$vector_dim, VECTOR_DIM)
})
test_that("test init required named", {
ip_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights = do.call(IPInsights$new, ip_args)
expect_equal(ipinsights$role, COMMON_TRAIN_ARGS$role)
expect_equal(ipinsights$instance_count, INSTANCE_COUNT)
expect_equal(ipinsights$instance_type, COMMON_TRAIN_ARGS$instance_type)
expect_equal(ipinsights$num_entity_vectors, NUM_ENTITY_VECTORS)
expect_equal(ipinsights$vector_dim, VECTOR_DIM)
})
test_that("test all hyperparameters", {
ip_args = c(sagemaker_session=sagemaker_session(),
batch_metrics_publish_interval=100,
epochs=10,
learning_rate=0.001,
num_ip_encoder_layers=3,
random_negative_sampling_rate=5,
shuffled_negative_sampling_rate=5,
weight_decay=5.0,
ALL_REQ_ARGS)
ipinsights = do.call(IPInsights$new, ip_args)
expect_equal(ipinsights$hyperparameters(), list(
num_entity_vectors=ALL_REQ_ARGS$num_entity_vectors,
vector_dim=ALL_REQ_ARGS$vector_dim,
batch_metrics_publish_interval=100,
epochs=10,
learning_rate=0.001,
num_ip_encoder_layers=3,
random_negative_sampling_rate=5,
shuffled_negative_sampling_rate=5,
weight_decay=5.0)
)
})
test_that("test image", {
ip_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights = do.call(IPInsights$new, ip_args)
expect_equal(ipinsights$training_image_uri(), ImageUris$new()$retrieve("ipinsights", REGION))
})
test_that("test required hyper parameters type", {
ip_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
test_param = list("num_entity_vectors" = "string", "vector_dim" = "string")
for(i in seq_along(test_param)){
test_args = c(ip_args, test_param[i])
expect_error(do.call(IPInsights$new, test_args))
}
})
test_that("test required hyper parameters value", {
ip_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
test_param = list("num_entity_vectors" = 0,
"num_entity_vectors"= 500000001,
"vector_dim" = 3,
"vector_dim" = 4097)
for(i in seq_along(test_param)){
test_args = c(ip_args, test_param[i])
expect_error(do.call(IPInsights$new, test_args))
}
})
test_that("test optional hyper parameters value", {
ip_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
test_param = list("batch_metrics_publish_interval" = 0,
"epochs" = 0,
"learning_rate" = 0,
"learning_rate" = 11,
"num_ip_encoder_layers" = -1,
"num_ip_encoder_layers" = 101,
"random_negative_sampling_rate" = -1,
"random_negative_sampling_rate" = 501,
"shuffled_negative_sampling_rate" = -1,
"shuffled_negative_sampling_rate" = 501,
"weight_decay" = -1,
"weight_decay" = 11)
for(i in seq_along(test_param)){
test_args = c(ip_args, test_param[i])
expect_error(do.call(IPInsights$new, test_args))
}
})
PREFIX = "prefix"
FEATURE_DIM = NULL
MINI_BATCH_SIZE = 200
test_that("test call fit", {
ip_args = c(base_job_name="ipinsights", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights=do.call(IPInsights$new, ip_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
ipinsights$fit(data, MINI_BATCH_SIZE)
expect_equal(ipinsights$latest_training_job , "sagemaker-ipinsight-dummy")
expect_equal(ipinsights$mini_batch_size , MINI_BATCH_SIZE)
})
test_that("test prepare for training none mini batch_size", {
ip_args = c(base_job_name="ipinsights", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights=do.call(IPInsights$new, ip_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
ipinsights$fit(data)
expect_equal(ipinsights$latest_training_job , "sagemaker-ipinsight-dummy")
})
test_that("test prepare for training wrong type mini batch size", {
ip_args = c(base_job_name="ipinsights", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights=do.call(IPInsights$new, ip_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
expect_error(ipinsights$.prepare_for_training(data, "some"))
})
test_that("test prepare for training wrong value lower mini batch size", {
ip_args = c(base_job_name="ipinsights", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights=do.call(IPInsights$new, ip_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
expect_error(ipinsights$.prepare_for_training(data, 0))
})
test_that("test prepare for training wrong value upper mini batch size", {
ip_args = c(base_job_name="ipinsights", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights=do.call(IPInsights$new, ip_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
expect_error(ipinsights$.prepare_for_training(data, 500001))
})
test_that("test model image", {
ip_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights=do.call(IPInsights$new, ip_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
ipinsights$fit(data, MINI_BATCH_SIZE)
model = ipinsights$create_model()
expect_equal(model$image_uri, ImageUris$new()$retrieve("ipinsights", REGION))
})
test_that("test predictor type", {
ip_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
ipinsights=do.call(IPInsights$new, ip_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
ipinsights$fit(data, MINI_BATCH_SIZE)
model = ipinsights$create_model()
predictor = model$deploy(1, INSTANCE_TYPE)
expect_true(inherits(predictor, "IPInsightsPredictor"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.