# NOTE: This code has been modified from AWS Sagemaker Python: https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/test_object2vec.py
context("object2vec")
ROLE = "myrole"
INSTANCE_COUNT = 1
INSTANCE_TYPE = "ml.c4.xlarge"
EPOCHS = 5
ENC0_MAX_SEQ_LEN = 100
ENC0_VOCAB_SIZE = 500
MINI_BATCH_SIZE = 32
COMMON_TRAIN_ARGS = list(
"role"= ROLE,
"instance_count"= INSTANCE_COUNT,
"instance_type"= INSTANCE_TYPE
)
ALL_REQ_ARGS = c(list("epochs"= EPOCHS, "enc0_max_seq_len"= ENC0_MAX_SEQ_LEN, "enc0_vocab_size"= ENC0_VOCAB_SIZE),
COMMON_TRAIN_ARGS)
REGION = "us-west-2"
BUCKET_NAME = "Some-Bucket"
DESCRIBE_TRAINING_JOB_RESULT = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://bucket/model.tar.gz"))
ENDPOINT_DESC = list("EndpointConfigName"= "test-endpoint")
ENDPOINT_CONFIG_DESC = list("ProductionVariants"= list(list("ModelName"= "model-1"), list("ModelName"= "model-2")))
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
sagemaker_client <- Mock$new()
sagemaker_client$.call_args("describe_training_job", DESCRIBE_TRAINING_JOB_RESULT)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sms$.call_args("default_bucket", BUCKET_NAME)
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-object2vec-dummy"))
sms$.call_args("create_model", "sagemaker-object2vec")
sms$.call_args("endpoint_from_production_variants", "sagemaker-object2vec-endpoint")
sms$.call_args("logs_for_job")
sms$s3 <- s3_client
sms$sagemaker <- sagemaker_client
return(sms)
}
test_that("test init required positional", {
object2vec = Object2Vec$new(
ROLE,
INSTANCE_COUNT,
INSTANCE_TYPE,
EPOCHS,
ENC0_MAX_SEQ_LEN,
ENC0_VOCAB_SIZE,
sagemaker_session=sagemaker_session()
)
expect_equal(object2vec$role, COMMON_TRAIN_ARGS$role)
expect_equal(object2vec$instance_count, INSTANCE_COUNT)
expect_equal(object2vec$instance_type, COMMON_TRAIN_ARGS$instance_type)
expect_equal(object2vec$epochs, EPOCHS)
expect_equal(object2vec$enc0_max_seq_len, ENC0_MAX_SEQ_LEN)
expect_equal(object2vec$enc0_vocab_size, ENC0_VOCAB_SIZE)
})
test_that("test init required named", {
object2vec_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec = do.call(Object2Vec$new, object2vec_args)
expect_equal(object2vec$role, COMMON_TRAIN_ARGS$role)
expect_equal(object2vec$instance_count, INSTANCE_COUNT)
expect_equal(object2vec$instance_type, COMMON_TRAIN_ARGS$instance_type)
expect_equal(object2vec$epochs, ALL_REQ_ARGS$epochs)
expect_equal(object2vec$enc0_max_seq_len, ALL_REQ_ARGS$enc0_max_seq_len)
expect_equal(object2vec$enc0_vocab_size, ALL_REQ_ARGS$enc0_vocab_size)
})
test_that("test all hyperparameters", {
object2vec_args = c(sagemaker_session=sagemaker_session(),
enc_dim=1024,
mini_batch_size=100,
early_stopping_patience=3,
early_stopping_tolerance=0.001,
dropout=0.1,
weight_decay=0.001,
bucket_width=0,
num_classes=5,
mlp_layers=3,
mlp_dim=1024,
mlp_activation="tanh",
output_layer="softmax",
optimizer="adam",
learning_rate=0.0001,
negative_sampling_rate=1,
comparator_list="hadamard, abs_diff",
tied_token_embedding_weight=TRUE,
token_embedding_storage_type="row_sparse",
enc0_network="bilstm",
enc1_network="hcnn",
enc0_cnn_filter_width=3,
enc1_cnn_filter_width=3,
enc1_max_seq_len=300,
enc0_token_embedding_dim=300,
enc1_token_embedding_dim=300,
enc1_vocab_size=300,
enc0_layers=3,
enc1_layers=3,
enc0_freeze_pretrained_embedding=TRUE,
enc1_freeze_pretrained_embedding=FALSE,
ALL_REQ_ARGS)
object2vec = do.call(Object2Vec$new, object2vec_args)
hp = object2vec$hyperparameters()
expect_equal(hp$epochs, EPOCHS)
expect_equal(hp$mlp_activation , "tanh")
})
test_that("test image", {
object2vec_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec = do.call(Object2Vec$new, object2vec_args)
expect_equal(object2vec$training_image_uri(), ImageUris$new()$retrieve("object2vec", REGION))
})
test_that("test required hyper parameters type", {
object2vec_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec_args$epochs = NULL
test_param = list(num_topics = "string")
for(i in seq_along(test_param)){
test_args = c(object2vec_args, test_param[i])
expect_error(do.call(Object2Vec$new, test_args))
}
})
test_that("test required hyper parameters value", {
object2vec_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec_args$enc0_vocab_size = NULL
test_param = list("enc0_vocab_size"=0,
"enc0_vocab_size"=1000000000)
for(i in seq_along(test_param)){
test_args = c(object2vec_args, test_param[i])
expect_error(do.call(Object2Vec$new, test_args))
}
})
test_that("test optional hyper parameters type", {
object2vec_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec_args$epochs = NULL
test_param = list("epochs"="string",
"optimizer"=0,
"enc0_cnn_filter_width"="string",
"weight_decay"="string",
"learning_rate"="string",
"negative_sampling_rate"="some_string",
"comparator_list"= 0,
"comparator_list"= list("foobar"),
"token_embedding_storage_type"= 123)
for(i in seq_along(test_param)){
test_args = c(object2vec_args, test_param[i])
expect_error(do.call(Object2Vec$new, test_args))
}
})
test_that("test error optional hyper parameters value", {
object2vec_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec_args$epochs = NULL
test_param = list("epochs"=0,
"epochs"=1000,
"optimizer"="string",
"early_stopping_tolerance"=0,
"early_stopping_tolerance"=0.5,
"early_stopping_patience"=0,
"early_stopping_patience"=100,
"weight_decay"=-1,
"weight_decay"=200000,
"enc0_cnn_filter_width"=2000,
"learning_rate"=0,
"learning_rate"=2,
"negative_sampling_rate"=-1,
"comparator_list"="hadamard,foobar",
"token_embedding_storage_type"="foobar")
for(i in seq_along(test_param)){
test_args = c(object2vec_args, test_param[i])
expect_error(do.call(Object2Vec$new, test_args))
}
})
PREFIX = "prefix"
FEATURE_DIM = 10
test_that("test call fit", {
object2vec_args = c(base_job_name="object2vec", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec=do.call(Object2Vec$new, object2vec_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
object2vec$fit(data, MINI_BATCH_SIZE)
expect_equal(object2vec$latest_training_job , "sagemaker-object2vec-dummy")
expect_equal(object2vec$mini_batch_size , MINI_BATCH_SIZE)
})
test_that("test prepare for training none mini batch_size", {
object2vec_args = c(base_job_name="object2vec", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec=do.call(Object2Vec$new, object2vec_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
object2vec$fit(data)
expect_equal(object2vec$latest_training_job , "sagemaker-object2vec-dummy")
})
test_that("test prepare for training wrong type mini batch size", {
object2vec_args = c(base_job_name="object2vec", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec=do.call(Object2Vec$new, object2vec_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
expect_error(object2vec$.prepare_for_training(data, "some"))
})
test_that("test prepare for training wrong value lower mini batch size", {
object2vec_args = c(base_job_name="object2vec", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec=do.call(Object2Vec$new, object2vec_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
expect_error(object2vec$.prepare_for_training(data, 0))
})
test_that("test model image", {
object2vec_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec=do.call(Object2Vec$new, object2vec_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
object2vec$fit(data, MINI_BATCH_SIZE)
model = object2vec$create_model()
expect_equal(model$image_uri, ImageUris$new()$retrieve("object2vec", REGION))
})
test_that("test predictor type", {
object2vec_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
object2vec=do.call(Object2Vec$new, object2vec_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
object2vec$fit(data, MINI_BATCH_SIZE)
model = object2vec$create_model()
predictor = model$deploy(1, INSTANCE_TYPE)
expect_true(inherits(predictor, "Predictor"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.