# NOTE: This code has been modified from AWS Sagemaker Python: https://github.com/aws/sagemaker-python-sdk/blob/master/tests/unit/test_randomcutforest.py
context("randomcutforest")
ROLE = "myrole"
INSTANCE_COUNT = 1
INSTANCE_TYPE = "ml.c4.xlarge"
NUM_SAMPLES_PER_TREE = 20
NUM_TREES = 50
EVAL_METRICS = list("accuracy", "precision_recall_fscore")
COMMON_TRAIN_ARGS = list(
"role"= ROLE,
"instance_count"= INSTANCE_COUNT,
"instance_type"= INSTANCE_TYPE
)
ALL_REQ_ARGS = COMMON_TRAIN_ARGS
REGION = "us-west-2"
BUCKET_NAME = "Some-Bucket"
DESCRIBE_TRAINING_JOB_RESULT = list("ModelArtifacts"= list("S3ModelArtifacts"= "s3://bucket/model.tar.gz"))
ENDPOINT_DESC = list("EndpointConfigName"= "test-endpoint")
ENDPOINT_CONFIG_DESC = list("ProductionVariants"= list(list("ModelName"= "model-1"), list("ModelName"= "model-2")))
sagemaker_session <- function(){
paws_mock <- Mock$new(name = "PawsCredentials", region_name = REGION)
sms <- Mock$new(
name = "Session",
paws_credentials = paws_mock,
paws_region_name=REGION,
config=NULL,
local_mode=FALSE,
s3 = NULL
)
s3_client <- Mock$new()
s3_client$.call_args("put_object")
sagemaker_client <- Mock$new()
sagemaker_client$.call_args("describe_training_job", DESCRIBE_TRAINING_JOB_RESULT)
sagemaker_client$.call_args("describe_endpoint", ENDPOINT_DESC)
sagemaker_client$.call_args("describe_endpoint_config", ENDPOINT_CONFIG_DESC)
sms$.call_args("default_bucket", BUCKET_NAME)
sms$.call_args("expand_role", ROLE)
sms$.call_args("train", list(TrainingJobArn = "sagemaker-randomcutforest-dummy"))
sms$.call_args("create_model", "sagemaker-randomcutforest")
sms$.call_args("endpoint_from_production_variants", "sagemaker-randomcutforest-endpoint")
sms$.call_args("logs_for_job")
sms$s3 <- s3_client
sms$sagemaker <- sagemaker_client
return(sms)
}
test_that("test init required positional", {
randomcutforest = RandomCutForest$new(
ROLE,
INSTANCE_COUNT,
INSTANCE_TYPE,
NUM_SAMPLES_PER_TREE,
NUM_TREES,
EVAL_METRICS,
sagemaker_session=sagemaker_session()
)
expect_equal(randomcutforest$role, ROLE)
expect_equal(randomcutforest$instance_count, INSTANCE_COUNT)
expect_equal(randomcutforest$instance_type, INSTANCE_TYPE)
expect_equal(randomcutforest$num_trees, NUM_TREES)
expect_equal(randomcutforest$num_samples_per_tree, NUM_SAMPLES_PER_TREE)
expect_equal(randomcutforest$eval_metrics, EVAL_METRICS)
})
test_that("test init required named", {
rf_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
randomcutforest = do.call(RandomCutForest$new, rf_args)
expect_equal(randomcutforest$role, COMMON_TRAIN_ARGS$role)
expect_equal(randomcutforest$instance_count, INSTANCE_COUNT)
expect_equal(randomcutforest$instance_type, COMMON_TRAIN_ARGS$instance_type)
})
test_that("test all hyperparameters", {
rf_args = c(sagemaker_session=sagemaker_session(),
num_trees=NUM_TREES,
num_samples_per_tree=NUM_SAMPLES_PER_TREE,
eval_metrics=list(EVAL_METRICS),
ALL_REQ_ARGS)
randomcutforest = do.call(RandomCutForest$new, rf_args)
expect_equal(randomcutforest$hyperparameters(), list(
num_samples_per_tree=NUM_SAMPLES_PER_TREE,
num_trees=NUM_TREES,
eval_metrics=EVAL_METRICS))
})
test_that("test image", {
rf_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
randomcutforest = do.call(RandomCutForest$new, rf_args)
expect_equal(randomcutforest$training_image_uri(), ImageUris$new()$retrieve("randomcutforest", REGION))
})
test_that("test iterable hyper parameters type", {
rf_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
test_param = list(num_trees="Dummy",
num_samples_per_tree="DUMMY")
for(i in seq_along(test_param)){
test_args = c(rf_args, test_param[i])
expect_error(do.call(RandomCutForest$new, test_args))
}
})
test_that("test optional hyper parameters value", {
rf_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
test_param = list(num_trees=49,
num_trees=1001,
num_samples_per_tree=0,
num_samples_per_tree=2049)
for(i in seq_along(test_param)){
test_args = c(rf_args, test_param[i])
expect_error(do.call(RandomCutForest$new, test_args))
}
})
PREFIX = "prefix"
FEATURE_DIM = 10
MAX_FEATURE_DIM = 10000
MINI_BATCH_SIZE = 1000
test_that("test prepare for training no mini batch_size", {
rf_args = c(base_job_name="randomcutforest", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
randomcutforest=do.call(RandomCutForest$new, rf_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
randomcutforest$.prepare_for_training(data)
expect_equal(randomcutforest$mini_batch_size , MINI_BATCH_SIZE)
})
test_that("test prepare for training no mini batch_size", {
rf_args = c(base_job_name="randomcutforest", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
randomcutforest=do.call(RandomCutForest$new, rf_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
expect_error(randomcutforest$.prepare_for_training(data, 1234))
})
test_that("test prepare for training feature dim greater than max allowed", {
rf_args = c(base_job_name="randomcutforest", sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
randomcutforest=do.call(RandomCutForest$new, rf_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=MAX_FEATURE_DIM+1,
channel="train"
)
expect_error(randomcutforest$.prepare_for_training(data))
})
test_that("test model image", {
rf_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
randomcutforest=do.call(RandomCutForest$new, rf_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
randomcutforest$fit(data, MINI_BATCH_SIZE)
model = randomcutforest$create_model()
expect_equal(model$image_uri, ImageUris$new()$retrieve("randomcutforest", REGION))
})
test_that("test predictor type", {
rf_args = c(sagemaker_session=sagemaker_session(), ALL_REQ_ARGS)
randomcutforest=do.call(RandomCutForest$new, rf_args)
data = RecordSet$new(
sprintf("s3://%s/%s",BUCKET_NAME, PREFIX),
num_records=1,
feature_dim=FEATURE_DIM,
channel="train"
)
randomcutforest$fit(data, MINI_BATCH_SIZE)
model = randomcutforest$create_model()
predictor = model$deploy(1, INSTANCE_TYPE)
expect_true(inherits(predictor, "RandomCutForestPredictor"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.