R/progressionTest.R

Defines functions .progressionTest .perm_stat

.perm_stat <- function(pst_l, w_l, conditions) {
  d_l <- stats::weighted.mean(pst_l[conditions == unique(conditions)[1]],
                              w_l[conditions == unique(conditions)[1]]) -
         stats::weighted.mean(pst_l[conditions == unique(conditions)[2]],
                              w_l[conditions == unique(conditions)[2]])
  return(d_l)
}

.progressionTest <- function(pst, ws, conditions, global = TRUE, lineages = FALSE,
                             method = "KS",  thresh = 0.05, rep = 1e4,
                             args_mmd = list(), args_wass = list(),
                             args_classifier = list(),
                             distinct_samples = NULL) {
  # Get variables
  ws <- sweep(ws, 1, FUN = "/", STATS = apply(ws, 1, sum))
  colnames(pst) <- colnames(ws) <-
    paste0("lineage", seq_len(ncol(pst)))
  if (ncol(pst) == 1) {
    global <- FALSE
    lineages <- TRUE
  }
  n_conditions <- dplyr::n_distinct(conditions)
  # Get lineage levels p-values
  lineages_test <- lapply(colnames(pst), function(l){
    w_l <- ws[, l]
    pst_l <- pst[, l]
    if (method == "KS") {
      test_l <- Ecume::ks_test(x = pst_l[conditions == unique(conditions)[1]],
                               w_x = w_l[conditions == unique(conditions)[1]],
                               y = pst_l[conditions == unique(conditions)[2]],
                               w_y = w_l[conditions == unique(conditions)[2]],
                               thresh = thresh)
      return(c("statistic" = test_l$statistic, "p.value" = test_l$p.value))
    }
    if (method == "Permutation") {
      d_l <- .perm_stat(pst_l, w_l, conditions)
      d_il <- replicate(rep, {
        conditions_i <- sample(conditions)
        return(.perm_stat(pst_l, w_l, conditions_i))
      })
      return(c("statistic" = d_l,
               "p.value" = max(mean(abs(d_l) <= abs(d_il)), 1 / rep)))
    }
    pst_l <- pst_l[w_l > 0]
    if (method == "Classifier") {
      xs <- lapply(unique(conditions), function(cond) {
        return(as.matrix(pst_l[conditions[w_l > 0] == cond]))
      })
      args <- args_classifier
      args$x <- xs; args$thresh <- thresh
      test_l <- do.call(Ecume::classifier_test, args)
      return(c("statistic" = test_l$statistic, "p.value" = test_l$p.value))
    }
    if (method == "mmd") {
      n <- max(table(conditions))
      frac <- 10^5 / (n * (n - 1))
      args <- args_mmd
      args$x <- as.matrix(pst_l[conditions[w_l > 0] == unique(conditions)[1]])
      args$y <- as.matrix(pst_l[conditions[w_l > 0] == unique(conditions)[2]])
      args$frac <- frac
      test_l <- do.call(Ecume::mmd_test, args)
      return(c("statistic" = test_l$statistic, "p.value" = test_l$p.value))
    }
    if (method == "wasserstein_permutation") {
      n <- max(table(conditions))
      S <- min(10^5, n)
      args <- args_wass
      args$x <- as.matrix(pst_l[conditions[w_l > 0] == unique(conditions)[1]])
      args$y <- as.matrix(pst_l[conditions[w_l > 0] == unique(conditions)[2]])
      args$S <- S; args$fast <- TRUE; args$iterations <- rep
      test_l <- do.call(Ecume::wasserstein_permut, args)
      return(c("statistic" = test_l$statistic, "p.value" = test_l$p.value))
    }
    if (method == "distinct") {
      inputs <- .distinct_inputs(pst_l, distinct_samples[w_l > 0], conditions[w_l > 0])
      test_l <- distinct_test(x = inputs$sce, name_assays_expression = "Pseudotime",
                              name_cluster = "Cluster", name_sample = "Samples",
                              design = inputs$design,
                              column_to_test = 2, min_non_zero_cells = 0,
                              n_cores = 1)
      return(c("statistic" = qnorm(test_l$p_val[1]), "p.value" = test_l$p_val[1]))
    }
  }) %>%
    dplyr::bind_rows(.id = "lineage") %>%
    dplyr::mutate(lineage = as.character(lineage)) %>%
    dplyr::select(lineage, statistic, p.value)


  # Get global p-values

  if (method == "Classifier") {
    xs <- lapply(unique(conditions), function(cond) {
      as.matrix(pst[conditions == cond, ])
    })
    args <- args_classifier
    args$x <- xs; args$thresh <- thresh
    glob_test <- do.call(Ecume::classifier_test, args)
  }
  if (method == "mmd") {
    n <- max(table(conditions))
    frac <- 10^5 / (n * (n - 1))
    args <- args_mmd
    args$x <- as.matrix(pst[conditions == unique(conditions)[1], ])
    args$y <- as.matrix(pst[conditions == unique(conditions)[2], ])
    args$frac <- frac
    glob_test <- do.call(Ecume::mmd_test, args)
  }
  if (method == "wasserstein_permutation") {
    n <- max(table(conditions))
    S <- min(10^5, n)
    args <- args_wass
    args$x <- as.matrix(pst[conditions == unique(conditions)[1], ])
    args$y <- as.matrix(pst[conditions == unique(conditions)[2], ])
    args$S <- S; args$fast <- TRUE; args$iterations <- rep
    glob_test <- do.call(Ecume::wasserstein_permut, args)
  }
  if (method %in% c("KS", "Permutation", "distinct")) {
    glob_test <- Ecume::stouffer_zscore(pvals = lineages_test$p.value,
                                        weights = colSums(ws))
  }

  glob_test <- data.frame("lineage" = "All",
                          "statistic" = glob_test$statistic,
                          "p.value" = glob_test$p.value)
  if (global == TRUE & lineages == FALSE) return(glob_test)
  if (global == FALSE & lineages == TRUE) return(lineages_test)
  if (global == TRUE & lineages == TRUE) {
    return(dplyr::bind_rows(glob_test, lineages_test))
  }
}


#' Differential Progression Test
#'
#' @description Test whether or not the pseudotime distribution are identical
#' within lineages between conditions
#'
#' @param pseudotime Can be either a \code{\link{SlingshotDataSet}} or a
#' \code{\link{SingleCellExperiment}} object or a matrix of pseudotime values,
#' each row represents a cell and each column represents a lineage.
#' @param cellWeights If `pseudotime` is a matrix of pseudotime values, this
#' represent the cell weights for each lineage. Ignored if `pseudotime` is not
#' a matrix.
#' @param conditions Either the vector of conditions, or a character indicating
#' which column of the metadata contains this vector.
#' @param global If TRUE, test for all lineages simultaneously.
#' @param lineages If TRUE, test for all lineages independently.
#' @param args_classifier arguments passed to the classifier test. See \code{\link{classifier_test}}.
#' @param method One of "KS", "Classifier", "mmd", "wasserstein_permutation" or
#'  "Permutation" for a permutation. See details. Default to KS if there is two
#' conditions and to "Classifier" otherwise.
#' @param thresh The threshold for the KS test or Classifier test.
#' Ignored if \code{method = "Permutation"}. Default to .01 for KS and .05 for
#' the 'classifier'.
#' @param args_mmd arguments passed to the mmd test. See \code{\link{mmd_test}}.
#' @param args_wass arguments passed to the wasserstein permutation test. See
#' \code{\link{wasserstein_permut}}.
#' @param distinct_samples The samples to which each cell belong to. Only use
#' with method `distinct`. See `\code{\link{distinct_test}}` for help.
#' @param rep Number of permutations to run. Only for methods "Permutations" and
#' "wasserstein_permutation". Default to \code{1e4}.
#' @importFrom slingshot slingshot SlingshotDataSet slingPseudotime slingCurveWeights
#' @importFrom stats weighted.mean
#' @importFrom dplyr n_distinct bind_rows mutate select distinct
#' @importFrom distinct distinct_test
#' @details
#' For every lineage, we compare the pseudotimes of the cells from either
#' conditions, using the lineage weights as observations weights.
#' \itemize{
#'   \item If \code{method = "KS"}, this uses the updated KS test,
#'   see \code{\link{ks_test}} for details.
#'   \item If \code{method = "Classifier"}, this uses a classifier to assess if
#'   that classifier can do better than chance on the conditions
#'   \item If \code{method = "Permutation"}, the difference of weighted mean
#'   pseudotime between condition is computed, and a p-value is found by
#'   permuting the condition labels.
#'   \item If \code{method = "mmd"}, this uses the mean maximum discrepancies
#'    statistics.
#' }
#' The p-value at the global level can be computed in two ways. method is \code{"KS"} or
#'  \code{"Permutation"}, then the p-values are computed using stouffer's
#'  z-score method, with the lineages weights acting as weights. Otherwise,
#'  the test works on multivariate data and is applied on all pseudotime values.
#' @references  Stouffer, S.A.; Suchman, E.A.; DeVinney, L.C.; Star, S.A.;
#' Williams, R.M. Jr. (1949).
#' *The American Soldier, Vol.1: Adjustment during Army Life.*
#' Princeton University Press, Princeton.
#' @md
#' @return A data frame with 3 columns:
#' \itemize{
#'   \item *lineage* for individual lineages, the lineage number. For global,
#'   \code{"All"}.
#'   \item *p.value* the pvalue for the test at the global or lineage level
#'   \item *statistic* for individual lineages, either the modified KS statistic
#'   if \code{method = "KS"}, or the weighted difference of means, if
#'   \code{method = "Permutation"}. For the global test, the combined Z-score.
#' }
#' @examples
#' data('slingshotExample', package = "slingshot")
#' rd <- slingshotExample$rd
#' cl <- slingshotExample$cl
#' condition <- factor(rep(c('A','B'), length.out = nrow(rd)))
#' condition[110:139] <- 'A'
#' sds <- slingshot::slingshot(rd, cl)
#' progressionTest(sds, condition)
#' @importFrom Ecume classifier_test ks_test stouffer_zscore mmd_test wasserstein_permut
#' @export
#' @rdname progressionTest
setMethod(f = "progressionTest",
          signature = c(pseudotime = "matrix"),
          definition = function(pseudotime, cellWeights, conditions,
    global = TRUE, lineages = FALSE,
    method = ifelse(dplyr::n_distinct(conditions) == 2, "KS", "Classifier"),
    thresh = ifelse(method == "Classifer", .05, .01), args_mmd = list(),
    args_classifier = list(), args_wass = list(), rep = 1e4,
    distinct_samples = NULL){
            if (!method %in% c("KS", "Permutation", "Classifier", "mmd",
                               "wasserstein_permutation", "distinct")) {
              stop(paste0(
                "Method must be one of KS, Classifier, mmd, permutation",
                ", wasserstein_permutation or distinct"))
            }
            if (n_distinct(conditions) > 2 && method != "Classifier") {
              warning("Changing to method classifier since more than ",
                      "two conditions are present.")
              method <- "Classifier"
            }
            res <- .progressionTest(pst = pseudotime, ws = cellWeights,
                                    conditions = conditions, global = global,
                                    lineages = lineages, method = method,
                                    thresh = thresh, rep = rep,
                                    args_mmd = args_mmd, args_wass = args_wass,
                                    args_classifier = args_classifier,
                                    distinct_samples = distinct_samples)
            return(res)
          }
)

#' @rdname progressionTest
#' @importFrom slingshot as.PseudotimeOrdering
setMethod(f = "progressionTest",
          signature = c(pseudotime = "SlingshotDataSet"),
          definition = function(pseudotime, conditions, global = TRUE,
    lineages = FALSE,
    method = ifelse(dplyr::n_distinct(conditions) == 2, "KS", "Classifier"),
    thresh = ifelse(method == "Classifer", .05, .01), args_mmd = list(),
    args_classifier = list(), args_wass = list(), rep = 1e4,
    distinct_samples = NULL){
            if (!method %in% c("KS", "Permutation", "Classifier", "mmd",
                               "wasserstein_permutation", "distinct")) {
              stop(paste0(
                "Method must be one of KS, Classifier, mmd, permutation",
                ", wasserstein_permutation or distinct"))
            }
            if (n_distinct(conditions) > 2 && method != "Classifier") {
              warning("Changing to method classifier since more than ",
                      "two conditions are present.")
              method <- "Classifier"
            }
            res <- progressionTest(pseudotime = as.PseudotimeOrdering(pseudotime),
                                   conditions = conditions,
                                   global = global, lineages = lineages,
                                   method = method, thresh = thresh,
                                   rep = rep, args_mmd = args_mmd,
                                   args_wass = args_wass,
                                   args_classifier = args_classifier,
                                   distinct_samples = distinct_samples)
            return(res)
          }
)


#' @export
#' @rdname progressionTest
#' @importClassesFrom SingleCellExperiment SingleCellExperiment
#' @importFrom SummarizedExperiment colData
setMethod(f = "progressionTest",
          signature = c(pseudotime = "SingleCellExperiment"),
          definition = function(pseudotime, conditions, global = TRUE,
    lineages = FALSE,
    method = ifelse(dplyr::n_distinct(conditions) == 2, "KS", "Classifier"),
    thresh = ifelse(method == "Classifer", .05, .01), args_mmd = list(),
    args_classifier = list(), args_wass = list(), rep = 1e4,
    distinct_samples = NULL){
            if (is.null(pseudotime@int_metadata$slingshot) &
                is.null(colData(pseudotime)$slingshot)) {
              stop("For now this only works downstream of slingshot")
            }
            if (length(conditions) == 1) {
              if (conditions %in%
                  colnames(SummarizedExperiment::colData(pseudotime))
                ) {
                conditions <-
                  SummarizedExperiment::colData(pseudotime)[, conditions]
              } else {
                stop("conditions is not a column of colData(pseudotime)")
              }
            }
            return(progressionTest(slingshot::SlingshotDataSet(pseudotime),
                                   conditions = conditions, global = global,
                                   lineages = lineages, method = method,
                                   thresh = thresh, rep = rep,
                                   args_mmd = args_mmd, args_wass = args_wass,
                                   args_classifier = args_classifier,
                                   distinct_samples = distinct_samples))
          }
)

#' @rdname progressionTest
#' @importClassesFrom TrajectoryUtils PseudotimeOrdering
#' @export
setMethod(f = "progressionTest",
          signature = c(pseudotime = "PseudotimeOrdering"),
          definition = function(pseudotime, conditions, global = TRUE,
                                lineages = FALSE,
                                method = ifelse(dplyr::n_distinct(conditions) == 2, "KS", "Classifier"),
                                thresh = ifelse(method == "Classifer", .05, .01), args_mmd = list(),
                                args_classifier = list(), args_wass = list(), rep = 1e4,
                                distinct_samples = NULL){
            if (!method %in% c("KS", "Permutation", "Classifier", "mmd",
                               "wasserstein_permutation", "distinct")) {
              stop(paste0(
                "Method must be one of KS, Classifier, mmd, permutation",
                ", wasserstein_permutation or distinct"))
            }
            if (n_distinct(conditions) > 2 && method != "Classifier") {
              warning("Changing to method classifier since more than ",
                      "two conditions are present.")
              method <- "Classifier"
            }
            pst <- slingshot::slingPseudotime(pseudotime, na = FALSE)
            ws <- slingshot::slingCurveWeights(pseudotime, as.probs = TRUE)
            res <- .progressionTest(pst = pst, ws = ws, conditions = conditions,
                                    global = global, lineages = lineages,
                                    method = method, thresh = thresh,
                                    rep = rep, args_mmd = args_mmd,
                                    args_wass = args_wass,
                                    args_classifier = args_classifier,
                                    distinct_samples = distinct_samples)
            return(res)
          }
)
HectorRDB/condiments documentation built on Oct. 18, 2024, 10:13 p.m.