#' check whether tax abundance table is summarized or not
#' @noRd
check_tax_summarize <- function(ps) {
taxa <- row.names(otu_table(ps))
# whether taxa is separated by `|`,
# may be required to add extra separate strings in the future
has_separate <- any(grepl("[|]", taxa))
has_separate
}
# whether picrust functional profile
is_picrust2 <- function(ps) {
ps_ranks <- rank_names(ps)
if ("Picrust_trait" %in% ps_ranks) TRUE else FALSE
}
#' check whether all names of taxonomic ranks include in available_ranks
#' @noRd
check_rank_names <- function(ps) {
ps_ranks <- rank_names(ps)
if (is_picrust2(ps)) {
picrust_rank <- c("Picrust_trait", "Picrust_description")
diff_rank <- setdiff(ps_ranks, picrust_rank)
if (length(diff_rank)) {
stop("ranks of picrust2 functional profile must be one of ",
paste(picrust_rank, collapse = ", "))
}
} else {
if (!all(ps_ranks %in% available_ranks)) {
stop(
"ranks of taxonimic profile must be one of ",
paste(available_ranks, collapse = ", ")
)
}
}
invisible(ps)
}
#' only first letter in lower case
#' @noRd
upper_firstletter <- function(x) {
paste(toupper(substr(x, 1, 1)), tolower(substr(x, 2, nchar(x))), sep = "")
}
#' add prefix of taxonomic ranks for summarized data construct from original
#' lefse (galaxy lefse or python app) input, p__, k__
#' @param ps a [`phyloseq::phyloseq-class`] object
#' @param ranks character vector, prefix of ranks to add, e.g. "p", "c"
#' @importFrom phyloseq taxa_names<-
#' @noRd
add_prefix_summarized <- function(ps, ranks_prefix, sep = "|") {
tax <- tax_table(ps)@.Data[, 1]
tax_split <- strsplit(tax, split = sep, fixed = TRUE)
if (max(lengths(tax_split)) != length(ranks_prefix)) {
stop(
"The length of `ranks_prefix` muste be",
" equal to number of taxonomic ranks.",
call. = FALSE
)
}
# ensure the ranks_prefix is contained in available_ranks
# and in descending order
available_prefix <- get_available_prefix(available_ranks)
if (!all(ranks_prefix %in% available_prefix)) {
stop("all elements of ranks_prefix must be contained ", "
in available_ranks")
}
ranks_prefix <- keep_prefix_desc(ranks_prefix, type = "ranks_prefix")
tax_prefix <- purrr::map(
tax_split,
~ paste0(ranks_prefix[seq_along(.x)], "__", .x) %>%
paste0(collapse = sep)
)
tax_prefix <- do.call(rbind, tax_prefix)
colnames(tax_prefix) <- paste0(ranks_prefix, collapse = sep)
tax_table(ps) <- tax_table(tax_prefix)
taxa_names(ps) <- tax_prefix[, 1]
ps
}
# extract the first letter of taxonomic ranks as the prefixes of the ranks
get_available_prefix <- function(ranks) {
substr(ranks, 1, 1) %>%
tolower()
}
# keep prefix in descending order: "k" "p" "c" "o" "f" "g" "s"
keep_prefix_desc <- function(ranks_prefix, type = c("ranks", "ranks_prefix")) {
type <- match.arg(type, choices = c("ranks", "ranks_prefix"))
available_prefix <- get_available_prefix(available_ranks)
idx_desc <- sort(match(ranks_prefix, available_prefix))
if (type == "ranks") {
return(available_ranks[idx_desc])
} else {
return(available_prefix[idx_desc])
}
}
# check whether var in sample meta data, or raise an error
check_var_in_meta <- function(var, sample_meta) {
stopifnot(inherits(sample_meta, "sample_data"))
meta_nms <- names(sample_meta)
if (!var %in% meta_nms) {
stop(var, " must be one of variable of `sample_meta`", call. = FALSE)
}
}
################################################################################
## preprocessing ps object
################################################################################
# preprocess of phyloseq object, including keep taxa in rows,
# filter taxa whose abundance is zero, fix duplicated tax
# filter samples whose library size is zero
#' @importFrom phyloseq prune_samples
#'
preprocess_ps <- function(ps) {
zero_sample <- check_samples(ps)
if (!is.null(zero_sample)) {
warning(
"The library size of sample(s): ",
paste(zero_sample, collapse = ", "),
" is/are zero, and will be removed in the subsequent analysis."
)
keep <- setdiff(sample_names(ps), zero_sample)
ps <- prune_samples(keep, ps)
}
# keep taxa in rows
ps <- keep_taxa_in_rows(ps)
# filter the taxa whose abundance is zero
ps <- phyloseq_qc(ps)
# fix duplicated tax
ps <- fix_duplicate_tax(ps)
return(ps)
}
#' phyloseq quality control, remove otu/asv of which abundance is zero
#' @noRd
phyloseq_qc <- function(ps) {
prune_taxa(taxa_sums(ps) > 0, ps)
}
#' Transpose the phyloseq object to ensure taxa are in rows
#' @param ps a [phyloseq::phyloseq-class] object
#' @importMethodsFrom phyloseq t
#' @keywords internal
#' @noRd
keep_taxa_in_rows <- function(ps) {
if (!taxa_are_rows(ps)) {
ps <- t(ps)
}
return(ps)
}
# https://github.com/lch14forever/microbiomeVizb
# /94cbfe452a735aadf88733b27b8221a03f450a55/R/utils.R#L68-L86
#
#' Duplicated taxa: e.g. maybe multiple species (s__uncultured)
#' belong to different genera. append the upper level taxa to the taxa to
#' distinguish this duplicated taxa
#' @param ps [phyloseq::phyloseq-class] object or
#' [phyloseq::taxonomyTable-class] object
#' @importFrom phyloseq tax_table<-
#' @keywords internal
#' @noRd
fix_duplicate_tax <- function(ps) {
# convert na to Unknown first
ps <- fix_na_tax(ps)
tax <- tax_table(ps)
if (ncol(tax) == 1) {
return(ps)
}
for (i in 2:ncol(tax)) {
tax_uniq <- unique(tax[, i])
for (j in seq_along(tax_uniq)) {
if (is.na(tax_uniq[j])) next
ind <- which(tax[, i] == as.character(tax_uniq[j]))
if (length(unique(tax[ind, i - 1])) > 1) {
tax[ind, i] <- paste(tax[ind, i - 1], tax[ind, i], sep = "_")
}
}
}
tax_table(ps) <- tax
return(ps)
}
#' set NA (missing) tax to its prefix, e.g. s__ (or s__unknown?)
#' @keywords internal
#' @noRd
fix_na_tax <- function(ps) {
tax <- as.data.frame(tax_table(ps))
tax_fixed <- purrr::imap_dfc(
tax,
~ ifelse(is.na(.x), get_prefix(.y), .x)
) %>%
as.matrix()
row.names(tax_fixed) <- taxa_names(ps)
tax_table(ps) <- tax_fixed
return(ps)
}
# extract the prefix of taxonomic ranks
get_prefix <- function(ranks) {
prefix <- substr(ranks, 1, 1) %>%
tolower() %>%
paste("__", sep = "")
prefix
}
# `metagenomeSeq::cumNormStatFast()` requires counts of all samples at least
# have two non zero features. Thus, if there are samples with only one non-zer
# features, `cumNormStat()` is taken to compute the pth quantile.
# This function was used to select the function to calculate the quantile used
# for CSS norm factors estimation in metagenomeSeq.
select_quantile_func <- function(counts) {
if (sum(colSums(counts > 0) > 1) < ncol(counts)) {
fun_p <- metagenomeSeq::cumNormStat
} else {
fun_p <- metagenomeSeq::cumNormStatFast
}
fun_p
}
get_norm_method <- function(norm) {
new_norm <- ifelse(
is.numeric(norm),
paste("per-sample normalized (sum of all taxa) to", norm),
norm
)
new_norm
}
# check samples in ps, make sure at least one non zero features in a sample
check_samples <- function(ps) {
if (!taxa_are_rows(ps)) {
ps <- t(ps)
}
lib_size <- colSums(otu_table(ps))
zero_ind <- which(lib_size == 0)
if (length(zero_ind) == 0) {
return(NULL)
}
return(sample_names(ps)[zero_ind])
}
# remove samples with missing values for any variable specified in the group
remove_na_samples <- function(ps, group) {
groups <- sample_data(ps)[[group]]
na_idx <- is.na(groups)
if (all(!na_idx)) {
return(ps)
}
sample_nms <- sample_names(ps)
warning(
"remove sample(s): ", paste(sample_nms[na_idx], collapse = ","),
", which with missing value in `", group, "`"
)
ps <- phyloseq::prune_samples(sample_nms[!na_idx], ps)
ps
}
## calculate coef for edgeR, metagenomeSeq
# if contrast is a two length character, set the first element as the first level
# (reference group), the second element as the second level, return a single
# integer
#
# if contrast is null, return a integer vector (number of levels - 1)
check_contrast <- function(contrast) {
if (!is.null(contrast)) {
if (!is.character(contrast) || length(contrast) != 2) {
stop("`contrast` must be a two length character", call. = FALSE)
}
}
contrast
}
set_lvl <- function(groups, contrast) {
if (!is.factor(groups)) {
stop("`groups` must be a factor", call. = FALSE)
}
# this will will change the elements simultaneously
# levels(groups) <- c(contrast, setdiff(levels(groups), contrast))
groups <- factor(
groups,
levels = c(contrast, setdiff(levels(groups), contrast))
)
groups
}
create_design <- function(groups, meta, confounders = character(0)) {
if (inherits(meta, "sample_data")) {
meta <- data.frame(meta)
}
model_data <- data.frame(group = groups)
if (!length(confounders)) {
design <- stats::model.matrix(~ group, data = model_data)
} else {
model_data[confounders] <- meta[confounders]
design <- stats::model.matrix(
formula(paste(
"~ + ",
paste(c(confounders, "group"), collapse = " + "))),
data = model_data
)
}
design
}
calc_coef <- function(groups, design, contrast = NULL) {
contrast <- check_contrast(contrast)
groups <- set_lvl(groups, contrast)
lvl <- levels(groups)
n_lvl <- length(lvl)
n_design <- ncol(design)
if (n_lvl < 2) {
stop("Differential analysis requires at least two groups.")
}
if (n_lvl == 2) { # two groups
if (!is.null(contrast)) {
warning(
"`contrast` is ignored, you do not need to set it",
call. = FALSE
)
}
coef <- n_design
} else { # multiple groups
if (!is.null(contrast)) {
coef <- n_design - n_lvl + 2L
} else {
coef <- (n_design - n_lvl + 2L):n_design
}
}
coef
}
create_contrast <- function(groups, contrast = NULL) {
if (!is.factor(groups)) {
groups <- factor(groups)
}
lvl <- levels(groups)
n_lvl <- length(lvl)
if (n_lvl < 2) {
stop("Differential analysis requires at least two groups.")
}
if (n_lvl == 2) { # two groups
if (!is.null(contrast)) {
warning(
"`contrast` is ignored, you do not need to set it",
call. = FALSE
)
}
design <- rep(0, n_lvl)
design[1] <- -1
design[2] <- 1
} else { # multiple groups
if (!is.null(contrast)) {
if (!is.character(contrast) || length(contrast) != 2) {
stop("`contrast` must be a two length character", call. = FALSE)
}
idx <- match(contrast, lvl, nomatch = 0L)
if (!all(idx)) {
stop(
"all elements of `contrast` must be contained in `groups`",
call. = FALSE
)
}
design <- rep(0, n_lvl)
design[idx[1]] <- -1
design[idx[2]] <- 1
design <- matrix(design)
row.names(design) <- lvl
colnames(design) <- paste0(contrast[2], "-", contrast[1])
} else {
design <- create_pairwise_contrast(lvl)
}
}
design
}
# create all pair-wise comparisons (contrasts) for anova-like test
create_pairwise_contrast <- function(groups) {
groups <- factor(groups)
lvl <- levels(groups)
n <- length(lvl)
design <- matrix(0, n, choose(n, 2))
rownames(design) <- lvl
colnames(design) <- seq_len(choose(n, 2))
k <- 0
for (i in seq_len(n - 1)) {
for (j in (i + 1):n) {
k <- k + 1
design[j, k] <- 1
design[i, k] <- -1
colnames(design)[k] <- paste(lvl[j], "-", lvl[i], sep = "")
}
}
design
}
# extract the specify rank of phyloseq object, return a phyloseq object
# with only one rank
extract_rank <- function(ps, taxa_rank) {
ranks <- rank_names(ps)
if (!taxa_rank %in% c("none", ranks)) {
stop(
"`taxa_rank` must be one of options: none, ",
paste(rank_names(ps), collapse = ", "),
call. = FALSE
)
}
if (taxa_rank != "none") {
ps <- aggregate_taxa(ps, taxa_rank)
new_tax_table <- tax_table(ps)[, taxa_rank]
} else {
taxon <- taxa_names(ps)
new_tax_table <- tax_table(matrix(taxon))
colnames(new_tax_table) <- "otu"
rownames(new_tax_table) <- taxon
}
tax_table(ps) <- new_tax_table
# set the taxa names as the corresponding names
if (taxa_rank != "none") {
taxa_names(ps) <- new_tax_table[, 1]
}
ps
}
# only used for check the argument taxa_rank which is used to specify
# taxonomic rank to perform differential analysis on
check_taxa_rank <- function(ps, taxa_rank) {
ranks <- rank_names(ps)
all_taxa_rank <- c("all", "none", ranks)
if (!taxa_rank %in% all_taxa_rank) {
stop(
"`taxa_rank` must be one of ",
paste(all_taxa_rank, collapse = ", "),
call. = FALSE
)
}
invisible(ps)
}
# preprocess the ps according to para taxa_rank
pre_ps_taxa_rank <- function(ps, taxa_rank) {
if (is_picrust2(ps)) {
warning("para `taxa_rank` is not worked for picrust2 function profile",
" and it will be ignored")
return(ps)
}
ps <- check_taxa_rank(ps, taxa_rank)
if (taxa_rank == "all") {
ps_orig_summarized <- summarize_taxa(ps)
} else if (taxa_rank == "none") {
ps_orig_summarized <- extract_rank(ps, taxa_rank)
} else {
ps_orig_summarized <- aggregate_taxa(ps, taxa_rank) %>%
extract_rank(taxa_rank)
}
return(ps_orig_summarized)
}
# return the marker_table, if no significant marker return NULL
return_marker <- function(sig_feature, all_feature) {
if (nrow(sig_feature)) {
row.names(sig_feature) <- paste0("marker", seq_len(nrow(sig_feature)))
marker <- marker_table(sig_feature)
} else {
warning("No marker was identified", call. = FALSE)
marker <- NULL
}
marker
}
# For multiple groups comparison of LRT test of DESeq2.
# Only fold changes of pair-wise comparisons are supported in DESse2.
# https://support.bioconductor.org/p/131272/#131450
# https://github.com/qiime2/q2-composition/blob/HEAD/q2_composition/_ancom.py
#'
#' Calculate effect size, mean differences for two groups, and f statistic of
#' one-way anova for multiple groups.
#' @noRd
#' @importFrom stats lm aov
calc_ef_md_f <- function(feature_abd, group) {
group_n <- length(unique(group))
if (group_n < 2) {
stop("The number of group must be greater than 2", call. = FALSE)
}
if (group_n == 2) {
ef <- abs(lm(feature_abd ~ group)$coefficients[2])
} else if (group_n > 2) {
# f statistic from aov
ef <- summary(aov(feature_abd ~ group))[[1]]$`F value`[1]
}
ef
}
# create phyloseq from microbiomeMarker object,
# and keep only nodes correlated with significant features
create_ps_from_mm <- function(mm, only_marker = TRUE) {
ot <- otu_table(mm)
tt <- tax_table(mm)
st <- sample_data(mm)
mt <- marker_table(mm)
sig_features <- mt$feature
# extract all nodes correlated with the significant features
# First, all parent nodes of marker
down_nodes <- strsplit(sig_features, "|", fixed = TRUE) %>%
purrr::map(~ purrr::map_chr(
seq_along(.x), function(y) paste(.x[1:y], collapse = "|")))
down_nodes <- unique(unlist(down_nodes))
# Two, all children nodes of marker
all_features <- tt@.Data[, 1]
up_nodes <- purrr::map(sig_features,
~ all_features[grepl(.x, all_features, fixed = TRUE)])
up_nodes <- unique(unlist(up_nodes))
idx <- match(unique(c(down_nodes, up_nodes)), all_features)
if (only_marker) {
ot <- ot[idx, ]
tt <- tt[idx, ]
}
ps <- phyloseq(ot, tt, st)
ps
}
# check confounder
check_confounder <- function(ps, target_var, confounders = NULL) {
meta <- sample_data(ps)
vars <- names(meta)
if (! target_var %in% vars) {
stop(
"the interested var `target_var` must be contained in the meta data",
call. = FALSE
)
}
other_vars <- setdiff(vars, target_var)
if (is.null(confounders)) {
confounders <- other_vars
if (! length(confounders)) {
stop("No confounding var in sample meta data")
}
} else {
out_confounder <- setdiff(confounders, other_vars)
if (length(out_confounder)) {
stop("var(s) `", paste(out_confounder, collapse = "`, ` "),
"` not be contained in the sample meta data")
}
}
confounders
}
# generate n spaces character
space <- function(n) {
paste(rep(" ", each = n), collapse = "")
}
# transpose otu_table and then convert it to data.frame
#' @importMethodsFrom phyloseq t
transpose_and_2df <- function(ot) {
t(ot) %>% as.data.frame()
}
######################################################################
#' check whether samples' names start with numeric and then paste "S_"
#'
#' @param object (Optional). a [`phyloseq::phyloseq-class`] or
#' [`Biobase::ExpressionSet`] or [`phyloseq::otu_table-class`] or
#' [`phyloseq::otu_table-class`] or matrix/metadata.
#'
check_sample_names <- function(object) {
# phyloseq
if (inherits(object, "phyloseq")) {
if(length(grep("^\\d+", phyloseq::sample_names(object))) > 0) {
message("samples' names are start with numeric")
Names_index <- grep("^\\d+", phyloseq::sample_names(object))
phyloseq::sample_names(object)[Names_index] <-
paste0("S_", phyloseq::sample_names(object)[Names_index])
}
}
# ExpressionSet
if (inherits(object, "ExpressionSet")) {
if (length(grep("^\\d+", Biobase::sampleNames(object))) > 0) {
message("samples' names are start with numeric")
Names_index <- grep("^\\d+", Biobase::sampleNames(object))
Biobase::sampleNames(object)[Names_index] <-
paste0("S_", Biobase::sampleNames(object)[Names_index])
}
}
# otu table
if (inherits(object, "otu_table")) {
if (phyloseq::taxa_are_rows(object)) {
if(length(grep("^\\d+", colnames(object))) > 0) {
Names_index <- grep("^\\d+", colnames(object))
colnames(object)[Names_index] <- paste0("S_", colnames(object)[Names_index])
}
} else {
if(length(grep("^\\d+", rownames(object))) > 0) {
Names_index <- grep("^\\d+", rownames(object))
rownames(object)[Names_index] <- paste0("S_", rownames(object)[Names_index])
}
}
}
# matrix metadata
if(length(grep("^\\d+", rownames(object))) > 0) {
Names_index <- grep("^\\d+", rownames(object))
rownames(object)[Names_index] <- paste0("S_", rownames(object)[Names_index])
}
if(length(grep("^\\d+", colnames(object))) > 0) {
Names_index <- grep("^\\d+", colnames(object))
colnames(object)[Names_index] <- paste0("S_", colnames(object)[Names_index])
}
return(object)
}
#' @title generate multiple colors for visualization
#'
#' @description
#' This funciton is to generate multiple colors for visualization
#'
#' @param number (Required). integer. the number of colors (default: 74).
#'
#' @importFrom RColorBrewer brewer.pal.info brewer.pal
#'
default_color <- function(number = 74) {
dat_color <- RColorBrewer::brewer.pal.info
qual_col_pals <- dat_color[dat_color$category == "qual", ]
total_colors <- unlist(mapply(RColorBrewer::brewer.pal,
qual_col_pals$maxcolors,
rownames(qual_col_pals)))
res_colors <- total_colors[1:number]
return(res_colors)
}
#' @title Extract and visualize the eigenvalues/variances of dimensions
#'
#' @description
#' This funciton is to obtain eigenvalues/variances of dimensions
#'
#' @param X (Required). Ordination result.
#'
get_eigValue <- function(X) {
if (inherits(X, c("PCA", "CA", "MCA", "FAMD", "MFA", "HMFA",
"sPCA", "sCA", "sMCA", "sMFA", "sHMFA"))) {
eig <- X$eig
} else {
if (inherits(X, "prcomp") | inherits(X, "princomp")){
eig <- (X$sdev)^2
} else if (inherits(X, c("pca", "coa", "acm")) &
inherits(X, "dudi")) {
eig <- X$eig
} else if (inherits(X, "ca")) {
eig <- X$sv^2
} else if (inherits(X, "mjca")) {
eig <- X$inertia.e
} else if (inherits(X, "correspondence")) {
eig <- X$cor^2
} else if (inherits(X, "expoOutput")) {
eig <- X$ExPosition.Data$eigs
} else {
stop("An object of class : ", class(X), " can't be handled by the function get_eigenvalue()")
}
variance <- eig * 100/sum(eig)
cumvar <- cumsum(variance)
eig <- data.frame(eigenvalue = eig, variance = variance,
cumvariance = cumvar)
}
colnames(eig) <- c("eigenvalue", "variance.percent", "cumulative.variance.percent")
rownames(eig) <- paste0("Dim.", 1:nrow(eig))
return(eig)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.