#' @title Differential Expression Analysis by limma Package
#'
#' @description
#' limma requires the count data (a matrix of integer values) to input. The *Voom* would transform the count data for further data analysis.
#'
#' @details 12/2/2021 Guangzhou China
#' @author Hua Zou
#'
#' @param Expression, ExpressionSet; (Required) ExpressionSet object.
#' @param trim, Character; filter to apply.(default: trim="none").
#' @param Group_info, Character; design factor(default: "Group").
#' @param Group_name, Character; (Required) the group for comparison.
#' @param Pvalue, Numeric; significant level(default: 0.05).
#' @param Log2FC, Numeric; log2FoldChange(default: 1).
#'
#' @return
#' a list object:
#' limma results
#' significant difference with enriched directors
#'
#' @export
#'
#' @importFrom dplyr %>% select filter intersect all_of mutate
#' @importFrom tibble column_to_rownames column_to_rownames
#' @importFrom stats setNames model.matrix sd
#' @importFrom edgeR DGEList calcNormFactors
#' @importFrom Biobase pData exprs
#' @importFrom limma voom lmFit makeContrasts contrasts.fit eBayes topTable
#'
#' @usage run_Limma(dataset=ExpressionSet,
#' trim="none",
#' Group_info="Group",
#' Group_name=c("HC", "AA"),
#' Pvalue=0.05,
#' Log2FC=1)
#' @examples
#'
#' \donttest{
#' data(ExprSetRawCount)
#'
#' Limma_res <- run_Limma(dataset=ExprSetRawCount, Group_info="Group", Group_name=c("HC", "AA"), Pvalue=0.05, Log2FC=1)
#' Limma_res$res
#' }
#'
run_Limma <- function(dataset=ExprSetRawCount,
trim="none",
Group_info="Group",
Group_name=c("HC", "AA"),
Pvalue=0.05,
Log2FC=1){
# preprocess
dataset_processed <- get_processedExprSet(dataset=dataset, trim=trim)
metadata <- Biobase::pData(dataset_processed)
colnames(metadata)[which(colnames(metadata) == Group_info)] <- "Group"
profile <- Biobase::exprs(dataset_processed)
if(!any(profile %% 1 == 0)){
stop("The input matrix is not integer matrix please Check it")
}
# choose group
phen <- metadata %>% dplyr::filter(Group%in%Group_name)
intersect_sid <- dplyr::intersect(rownames(phen), colnames(profile))
# Prepare for input data
colData <- phen %>% tibble::rownames_to_column("SampleID") %>%
dplyr::select(dplyr::all_of(c("SampleID", "Group"))) %>%
dplyr::filter(SampleID%in%intersect_sid) %>%
dplyr::mutate(Group=factor(Group, levels = Group_name)) %>%
tibble::column_to_rownames("SampleID")
countData <- profile %>% data.frame() %>%
dplyr::select(dplyr::all_of(rownames(colData))) %>%
as.matrix()
# Median abundance
median_res <- apply(countData, 1, function(x, y){
dat <- data.frame(value=as.numeric(x), group=y)
# median value
mn <- tapply(dat$value, dat$group, median) %>%
data.frame() %>% setNames("value") %>%
tibble::rownames_to_column("Group")
mn1 <- with(mn, mn[Group%in%Group_name[1], "value"])
mn2 <- with(mn, mn[Group%in%Group_name[2], "value"])
mnall <- median(dat$value)
res <- c(mnall, mn1, mn2)
return(res)
}, colData$Group) %>%
t() %>% data.frame() %>%
tibble::rownames_to_column("FeatureID")
colnames(median_res) <- c("FeatureID", "Median Abundance\n(All)",
paste0("Median Abundance\n", Group_name))
# No zero value for Log transform
if(any(countData == 0)){
countData <- countData+1
}else{
countData <- countData
}
if(!all(rownames(colData) == colnames(countData))){
stop("Order of sampleID between colData and CountData is wrong please check your data")
}
# group Matrix
design <- stats::model.matrix(~0 + Group, data = colData)
colnames(design) <- levels(colData$Group)
rownames(design) <- colnames(countData)
# DGEList object: counts-> colnames:Samples; rownames:Features
dge_obj <- edgeR::DGEList(counts = countData)
dge_obj_factors <- edgeR::calcNormFactors(dge_obj)
# voom
dat_voom <- limma::voom(counts = dge_obj_factors,
design = design,
normalize.method = "quantile",
plot = TRUE)
# Linear model to calculate weighted least squares per gene in each group
fit <- limma::lmFit(object = dat_voom, design = design)
# Comparison between two groups
contr <- paste(rev(Group_name), collapse = "-")
contr.matrix <- limma::makeContrasts(contrasts = contr,
levels = design)
# Estimate contrast for each gene
fit.contr <- limma::contrasts.fit(fit, contr.matrix)
# Empirical Bayes smoothing of standard errors
fit.ebay <- limma::eBayes(fit.contr)
# DE result table
limma_res <- limma::topTable(fit.ebay, coef = contr, n=Inf, sort.by = "P")
colnames(limma_res)[c(1, 3:5)] <- c("Log2FoldChange", "Statistic", "Pvalue", "AdjPval")
t_res <- limma_res %>% tibble::rownames_to_column("FeatureID") %>%
dplyr::select(dplyr::all_of(c("FeatureID", "Log2FoldChange",
"Statistic", "Pvalue", "AdjPval"))) %>%
dplyr::inner_join(median_res, by = "FeatureID")
# enrichment
if(is.null(Log2FC)){
Log2FC <- with(t_res,
mean(abs(Log2FoldChange)) + 1.5*stats::sd(abs(Log2FoldChange)))
message(paste("Threshold of log2Foldchange [Mean+1.5(SD)] is", Log2FC))
}else{
Log2FC <- Log2FC
message(paste("Threshold of log2Foldchange is", Log2FC))
}
t_res[which(t_res$Log2FoldChange > Log2FC & t_res$AdjPval < Pvalue), "Enrichment"] <- Group_name[2]
t_res[which(t_res$Log2FoldChange < -Log2FC & t_res$AdjPval < Pvalue), "Enrichment"] <- Group_name[1]
t_res[which(abs(t_res$Log2FoldChange) <= Log2FC | t_res$AdjPval >= Pvalue), "Enrichment"] <- "Nonsignif"
print(table(t_res$Enrichment))
# Number of Group
dat_status <- table(colData$Group)
dat_status_number <- as.numeric(dat_status)
dat_status_name <- names(dat_status)
t_res$Block <- paste(paste(dat_status_number[1], dat_status_name[1], sep = "_"),
"vs",
paste(dat_status_number[2], dat_status_name[2], sep = "_"))
t_res_temp <- t_res %>% dplyr::select(FeatureID, Block, Enrichment,
AdjPval, Pvalue, Log2FoldChange, Statistic,
dplyr::everything()) %>% dplyr::arrange(AdjPval)
# 95% CI Odd Ratio
res_odd <- run_OddRatio(colData, countData, Group_name)
res <- dplyr::inner_join(t_res_temp, res_odd, by="FeatureID")
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.