#' @title quickReg
#' @description quickReg will produce a regression plot between a miRNA:mRNA
#' pair. An abline wil be generated. Odds-ratio will be calculated from
#' the coefficient. Confident intervals at 95% will be caclulated from the
#' coefficient also. This is a useful method to identify the relationship
#' between a miRNA:mRNA pair over time. The higher the odds-ratio the greater
#' the correlation between the two time series. The smaller the 95% confidence
#' intervals range, the more confident we can be about plotting the abline.
#' @param reg_df Matrix/assay which which was generated by the multiReg function.
#' Should be in the MAE used during the multiReg function.
#' @param colselect Integer which represents a column within reg_df containing
#' mRNA/ miRNA which the gene of interest (column 2) is to be contrasted agianst.
#' @return Regression plot between a miRNA:mRNA pair.
#' @export
#' @usage quickReg(reg_df, colselect)
#' @importFrom stats confint.default coef
#' @examples
#' library(org.Mm.eg.db)
#'
#' miR <- mm_miR[1:50,]
#'
#' mRNA <- mm_mRNA[1:100,]
#'
#' MAE <- startObject(miR = miR, mRNA = mRNA)
#'
#' MAE <- getIdsMir(MAE, assay(MAE, 1), orgDB = org.Mm.eg.db, 'mmu')
#'
#' MAE <- getIdsMrna(MAE, assay(MAE, 2), "useast", 'mmusculus', orgDB = org.Mm.eg.db)
#'
#' MAE <- diffExpressRes(MAE, df = assay(MAE, 1), dataType = 'Log2FC',
#' genes_ID = assay(MAE, 3),
#' idColumn = 'GENENAME',
#' name = "miRNA_log2fc")
#'
#' MAE <- diffExpressRes(MAE, df = assay(MAE, 2), dataType = 'Log2FC',
#' genes_ID = assay(MAE, 7),
#' idColumn = 'GENENAME',
#' name = "mRNA_log2fc")
#'
#' Filt_df <- data.frame(row.names = c("mmu-miR-145a-3p:Adamts15",
#' "mmu-miR-146a-5p:Acy1"),
#' corr = c(-0.9191653, 0.7826041),
#' miR = c("mmu-miR-145a-3p", "mmu-miR-146a-5p"),
#' mRNA = c("Adamts15", "Acy1"),
#' miR_Entrez = c(387163, NA),
#' mRNA_Entrez = c(235130, 109652),
#' TargetScan = c(1, 0),
#' miRDB = c(0, 0),
#' Predicted_Interactions = c(1, 0),
#' miRTarBase = c(0, 1),
#' Pred_Fun = c(1, 1))
#'
#' MAE <- matrixFilter(MAE, miningMatrix = Filt_df, negativeOnly = FALSE,
#' threshold = 1, predictedOnly = FALSE)
#'
#' MAE <- multiReg(MAE = MAE, gene_interest = "Adamts15",
#' mRNAreg =TRUE, filt_df=MAE[[11]], miRNA_exp=MAE[[9]],
#' mRNA_exp=MAE[[10]])
#'
#' model1 <- linearRegr(mreg = MAE[[12]], colselect =2, colpair =3)
#'
#' summary(model1$regression)
#'
#' quickReg(reg_df = MAE[[12]], colselect = 3)
quickReg <- function(reg_df, colselect) {
if (missing(reg_df)) stop('reg_df is missing. Add matrix/assay generated by the multiReg function.')
if (missing(colselect)) stop('colselect is missing. Add integer which represents column to contrast against the gene of interest (column 2).')
DF <- as.data.frame(reg_df)
simpleReg <- lm(data = as.data.frame(DF), DF[,colselect]~DF[,2])
ORandCint <- exp(cbind("Odds ratio" = coef(simpleReg),
confint.default(simpleReg, level = 0.95)))
OR <- round(ORandCint[2], 2)
lowCI <- round(ORandCint[4],2)
highCI <- round(ORandCint[6],2)
TargetmRNA <- colnames(DF)[2]
TargetmiRNA <- colnames(DF)[colselect]
par(mar = c(1, 1, 1, 1))
ggplot(DF, aes(DF[,colselect], DF[,2])) + geom_point(size=4, pch =15,
col="Blue") +
geom_smooth(method ="lm", col="Red", size=2.5)+
theme_classic()+
labs(title= paste0(TargetmRNA, ":", TargetmiRNA, " Regression"),
x=TargetmiRNA,
y=TargetmRNA,
subtitle=paste0("OR = ", OR, " | 95% CI =", lowCI, "-", highCI))+
theme(plot.title=element_text(size=20, face="bold",hjust = 0.5),
axis.text.x=element_text(size=20),
axis.text.y=element_text(size=20),
axis.title.x=element_text(size=20),
axis.title.y=element_text(size=20))+
theme(plot.subtitle=element_text(size=20, hjust=0.8,
face="italic", color="black"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.