inst/IP/StandardizedCPUE/SableWindGlorysTempGAMLFA30.r

#wind data from Sable (source D Brickman 2020)

require(bio.lobster)
require(bio.utilities)
require(lubridate)
require(PBSmapping)
require(mgcv)
require(gratia)
require(devtools)
dr = file.path(project.datadirectory('bio.lobster'),'data','wind')
a = read.table(file=file.path(dr, 'sable_daily.txt'),skip=13,header=T)
la()
#meterological direction is where it comes from to where it is going with N as 0, first line of data states direction 62.5 which is ENE wind meterologically (and thus -ve u and -ve v)
# this data is incorrectly coded for direction (i.e. west is 270 instead of 0 as is typical)-- correcting the direction and recalculating U and Vspeeds  so need to use
# the wspd and dir (which are correct) to fix the Uspd and Vspd where Uspd is the xdirection and Vspd is the ydirection


a$mathDir = 270 - a$Dir

a$Uspd = a$Wspd * sin(a$mathDir*pi/180)
a$Vspd = a$Wspd * cos(a$mathDir*pi/180)

a$Date = as.Date(with(a, paste(Year, Mo, Dy, sep="-")), '%Y-%m-%d')

	port_loc = lobster.db("port_location")
	
		logs = lobster.db("process.logs")
		vlog = lobster.db("process.vlog.redo")
		logs = merge(logs,port_loc,by.y='PORT_CODE',by.x='COMMUNITY_CODE')
		vlog$LICENCE_ID = paste(vlog$PORT_CODE, vlog$FCODE,sep="-")
		
		tmp1 = subset(logs,select=c("DATE_FISHED","SYEAR","WEIGHT_KG","LFA.x","NUM_OF_TRAPS","GRID_NUM","COMMUNITY_CODE",'CENTLON','CENTLAT','LICENCE_ID'))
		tmp1$type = 'mandatory'
		tmp2 = subset(vlog,select=c("FDATE","SYEAR","W_KG","N_TRP","LFA","X","Y",'PORT_CODE',"LICENCE_ID"))
		names(tmp2) = c("DATE_FISHED","SYEAR","WEIGHT_KG","NUM_OF_TRAPS","subarea","X","Y","COMMUNITY_CODE","LICENCE_ID")
		tmp2$LFA.x = tmp2$subareas
		tmp2 = assignArea(tmp2,coords=c("X","Y"))
		tmp2 = subset(tmp2,select=c("DATE_FISHED","SYEAR","WEIGHT_KG","LFA","NUM_OF_TRAPS","LFA_GRID",'COMMUNITY_CODE','X',"Y","LICENCE_ID"))
		tmp2$type = 'voluntary'
	    names(tmp2) = names(tmp1)

	    cpue.data = rbind(tmp2,tmp1)


#WIND
		xx = merge(cpue.data,a[,c('Year','Date','Dir','Wspd','Uspd','Vspd')],by.x='DATE_FISHED',by.y='Date')
		
		a$DL1 = a$Date+1
		a = rename.df(a,c('Dir','Wspd','Uspd','Vspd'),c('Dir_L1','Wspd_L1','Uspd_L1','Vspd_L1'))
		xx = merge(xx,a[,c('DL1','Dir_L1','Wspd_L1','Uspd_L1','Vspd_L1')],by.x='DATE_FISHED',by.y='DL1')
		
		a$DL2 = a$Date+2
		a = rename.df(a,c('Dir_L1','Wspd_L1','Uspd_L1','Vspd_L1'),c('Dir_L2','Wspd_L2','Uspd_L2','Vspd_L2'))
		xx = merge(xx,a[,c('DL2','Dir_L2','Wspd_L2','Uspd_L2','Vspd_L2')],by.x='DATE_FISHED',by.y='DL2')
	
		a$DL3 = a$Date+3
		a = rename.df(a,c('Dir_L2','Wspd_L2','Uspd_L2','Vspd_L2'),c('Dir_L3','Wspd_L3','Uspd_L3','Vspd_L3'))
		xx = merge(xx,a[,c('DL3','Dir_L3','Wspd_L3','Uspd_L3','Vspd_L3')],by.x='DATE_FISHED',by.y='DL3')
	
		xx = rename.df(xx,c('CENTLON','CENTLAT'),c('X','Y'))
###

	    g = subset(xx,LFA.x =='30')

	    #x = aggregate(cbind(WEIGHT_KG,NUM_OF_TRAPS)~DATE_FISHED+COMMUNITY_CODE+Uspd+Vspd+Year+Wspd+Dir+
	    #	Uspd_L1+Vspd_L1+Wspd_L1+Dir_L1+
	   # 	Uspd_L2+Vspd_L2+Wspd_L2+Dir_L2+
	   # 	Uspd_L3+Vspd_L3+Wspd_L3+Dir_L3
	   # 	,data=g,FUN=sum)
	   # x$CPUE = x$WEIGHT_KG / x$NUM_OF_TRAPS
	   # x=x[order(x$DATE_FISHED),]
	   # with(subset(x,Year==1985),plot(DATE_FISHED,CPUE,type='l'))
	   # x$lWt = log(x$WEIGHT_KG)
	   # x$lTr = log(x$NUM_OF_TRAPS)
	   # x$Doy = yday(x$DATE_FISHED)

		g$lWt = log(g$WEIGHT_KG)
	  	g$lTr = log(g$NUM_OF_TRAPS)
	   	g$Doy = yday(g$DATE_FISHED)

#does Wind affect effort on a given day?
## offset to max traps fished within season so that total reporting effort is captured
	
	mT = aggregate(NUM_OF_TRAPS~Year+COMMUNITY_CODE,data=g, FUN=max)
	names(mT)[3] = 'maxTraps'
	x = merge(g,mT)
	x$propMaxTraps = x$NUM_OF_TRAPS / x$maxTraps
	x$RUsp = round(x$Uspd,1)

outs = gam(propMaxTraps~	s(Year)+
			   	s(Doy)+
			   	s(Uspd,Vspd,by=Doy)
			   	,data=subset(x,Year>1998), family = betar(link='logit'), method='REML')
draw(outs)
#you will get a warning about saturation -- likely due to low dispersion parameter--not terribly concerning

#converting u and v to direction
uvToDir = function(u,v){
		180+180/pi*atan2(v,u)
		}

uvToSpeed = function(u,v){
		sqrt(u^2+v^2)
		}
		
x$COMMUNITY_CODEf = as.factor(x$COMMUNITY_CODE)
outs = gam(lWt~	s(Year)+
			   	s(Doy)+ 
			   	offset(lTr),data=x, method='REML')
draw(outs,parametric=F)
vis.gam(outs,view=c('Uspd_L1','Vspd_L1'),plot.type='contour',too.far=.05)

#Add in Glorys Temperature Data
	LFAs<-read.csv(file.path( project.datadirectory("bio.lobster"), "data","maps","LFAPolys.csv"))
	#Get the unique EIDS from GLORYS data
		L = subset(LFAs,PID==30)
		fd = file.path(project.datadirectory('bio.lobster'),'data','GLORYS','SummaryFiles')
		gL = dir(fd,full.names=T)
		gL = gL[grep('Isobath',gL)]
		EIDs = readRDS(gL[1])
		EIDs = EIDs[!duplicated(EIDs[,c('X','Y','EID')]),c('X','Y','EID')]
		I = findPolys(EIDs,L)$EID
g = subset(xx,LFA.x==30)


	#by LFA
out = list()
for(i in 1:length(gL)){
	jk = readRDS(gL[i])
	jk = subset(jk,EID %in% I & month(date) %in% 4:7 )
	out[[i]] = jk
}
	out = do.call(rbind,out)
	aGL = aggregate(cbind(vo_surface,vo_bottom,thetao,uo_surface,uo_bottom,bottomT,zos)~date, data=out,FUN=median)
	 aGL$DATE = as.Date(aGL$date)

	oo = merge(g,aGL, by.x='DATE_FISHED',by.y='DATE')

oo$lWt = oo$WEIGHT_KG
oo$lTr = oo$NUM_OF_TRAPS
oo$COMMUNITY_CODEf = as.factor(oo$COMMUNITY_CODE)
oo$Doy = yday(oo$DATE_FISHED)

oo$SoakDays = NA 
iu = unique(oo$LICENCE_ID)
outt = list()
mm=0
for(i in 1:length(iu)){
		u = subset(oo,LICENCE_ID ==iu[i])
		ge = unique(u$SYEAR)
		for(j in 1:length(ge)){
				mm=mm+1
				vc = subset(u,SYEAR==ge[j])
				vc$SoakDays = c(1,vc$DATE_FISHED[2:nrow(vc)] - vc$DATE_FISHED[1:(nrow(vc)-1)] )
				outt[[mm]] = vc
			}
		}

outall = do.call(rbind,outt)
outall = subset(outall,SoakDays<10)

#best model Feb 16
outs = gam(lWt~	s(Year)+
			   	s(Uspd_L1,Vspd_L1)+
			   	s(bottomT)+ 
			   	s(Doy,bottomT)+
			   	COMMUNITY_CODEf +
			   	(SoakDays) +
			   	offset(lTr),data=outall, method='REML')


require(gratia)
draw(outs, parametric=F)
savePlot('~/tmp/lfa30CPUE.png')


#offset to max traps fished within season so that total reporting effort is captured
	mT = aggregate(NUM_OF_TRAPS~Year+COMMUNITY_CODE,data=outall, FUN=max)
	names(mT)[2] = 'maxTraps'
	oo = merge(outall,mT)
	oo$propMaxTraps = oo$NUM_OF_TRAPS / oo$maxTraps

outsEffort = gam(propMaxTraps~	s(Year)+
			   	s(Doy)+
			   	s(Uspd,Vspd)+
			   	COMMUNITY_CODEf
			   	,data=subset(oo,Year>1991), family = betar(link='logit'), method='REML')
draw(outsEffort)
savePlot('~/tmp/lfa30Effort.png')

outT = gam(bottomT~	s(Year)+
			   	s(Uspd_L1,Vspd_L1)+s(Doy),
			   	data=outall, method='REML')
draw(outT)
savePlot('~/tmp/lfa30bottomT.png')

outW = gam(Uspd~	s(Year)+
			   	s(Doy),
			   	data=outall, method='REML')
draw(outW)
savePlot('~/tmp/lfa30WU.png')

outV = gam(Vspd~	s(Year)+
			   	s(Doy),
			   	data=outall, method='REML')
draw(outV)
savePlot('~/tmp/lfa30WV.png')
LobsterScience/bio.lobster documentation built on Feb. 14, 2025, 3:28 p.m.