#SpatialSurveyIndexTweedie
require(mgcv)
require(bio.lobster)
require(bio.utilities)
require(SpatialHub)
require(lubridate)
la()
ff = "LFA34Update"
fp1 = file.path(project.datadirectory('bio.lobster'),"analysis",ff)
fpf1 = file.path(project.figuredirectory('bio.lobster'),ff)
dir.create(fp1)
dir.create(fpf1)
##Commercial
# Survey Data
#dat = ILTS_ITQ_All_Data(redo_base_data = F, species = 2550, size=c(82,200),sex=c(0,1,2),aggregate = T,biomass=T ) need to add weights
surveyLobsters34index<-LobsterSurveyProcess(lfa="L34", yrs=1996:2023, mths=c("Aug","Jul","Jun"), bin.size=2.5, Net='NEST',size.range=c(82.5,200),biomass=T)
surveyLobsters34index$X = surveyLobsters34index$SET_LONG
surveyLobsters34index$Y = surveyLobsters34index$SET_LAT
attr(surveyLobsters34index,'projection') <- "LL"
#surveyLobsters34index = convUL(surveyLobsters34index)
surveyLobsters34index = lonlat2planar(surveyLobsters34index, input_names=c("SET_LONG", "SET_LAT"))
surveyLobsters34index$dyear = decimal_date(as.Date(surveyLobsters34index$SET_DATE))
surveyLobsters34index$plat = surveyLobsters34index$plat/1000
surveyLobsters34index$plon = surveyLobsters34index$plon/1000
# Spatial temporal parameters
Years = 1996:2023
LFAs<-read.csv(file.path( project.datadirectory("bio.lobster"), "data","maps","LFAPolys.csv"))
attr(LFAs,'projection')<- "LL"
#LFAs = convUL(LFAs)
LFAs = lonlat2planar(LFAs,input_names=c("X", "Y"))
LFAs = LFAs[,-which(names(LFAs)%in%c('X','Y'))]
LFAs = rename.df(LFAs,c('plon','plat'),c('X','Y'))
LFAs$X = LFAs$X/1000
LFAs$Y = LFAs$Y/1000
surveyLobsters34index$Quant.by.year = NA
for(i in 1:length(Years)){
k = which(surveyLobsters34index$YEAR==Years[i])
surveyLobsters34index$Quant.by.year[k] = findInterval(surveyLobsters34index$LobDen[k],quantile(surveyLobsters34index$LobDen[k],seq(.01,.99, length.out=10)))
}
nstations = aggregate(FISHSET_ID~YEAR+LFA,data=surveyLobsters34index,FUN=function(x) length(unique(x)))
#tweedie
#using the mpLC as a prob that the num caught is within the size class
sL = surveyLobsters34index
Years = unique(sL$YEAR)
#examining data
#model
f1 = formula(LobDen~as.factor(YEAR) + s(SET_DEPTH) + s(plon, plat,bs='ts' ,k=100))
aa = gam(f1,data=sL, family = Tweedie(p=1.25,link=power(.1))) ##
#Predictions from full model
load(file.path(project.datadirectory('bio.lobster'),'data','predspace.rdata')) #sq km
Ps = data.frame(EID=1:nrow(predSpace),predSpace[,c('plon','plat','z')])
Ps = rename.df(Ps,c('plon','plat','z'),c('X','Y','SET_DEPTH'))
key=findPolys(Ps,subset(LFAs,PID==34))
Ps = subset(Ps,EID%in%key$EID)
Ps = rename.df(Ps,c('X','Y'),c('plon','plat'))
Ps$pSOFT = .1
# annual predictions
R1index=c()
R1area = list()
R1surface=list()
ilink <- family(aa)$linkinv # this is the inverse of the link function
for(i in 1:length(Years)){
require(mgcv)
#Ps$dyear =Years[i]+.5
Ps$YEAR =Years[i]
Ps$AREA_SWEPT = mean(sL$AREA_SWEPT)
plo = as.data.frame(predict(aa,Ps,type='link',se.fit=TRUE))
plo$upper = ilink(plo$fit - (1.96 * plo$se.fit))
plo$lower = ilink(plo$fit - (1.96 * plo$se.fit))
plo$fitted = ilink(plo$fit)
xyz = data.frame(Ps[,c('plon','plat')],z=ilink(plo$fit))
corners = data.frame(lon=c(-67.8,-65),lat=c(42.5,45))
R1area[[i]] = c(Years[i],length(which(xyz$z<5)))
# SpatialHub::planarMap( xyz, save=F,fn=paste("gamtwPAR1",Years[i],sep='.'), datascale=seq(0.1,10000,l=30), annot=Years[i],loc=fpf1, corners=corners,log.variable=T)
#planarMap( xyz, fn=paste("lobster.gambi.pred",Years[i],sep='.'), annot=Years[i],loc="output",corners=corners)
#planarMap( xyz, corners=corners)
R1surface[[i]]=xyz
R1index[i]= sum(xyz$z)
}
Years = 1996:2023
#using the posterior distribution model coefs
f1 = formula(LobDen~as.factor(YEAR) + s(SET_DEPTH) + s(plon, plat,bs='ts' ,k=100))
aa = gam(f1,data=sL, family = Tweedie(p=1.25,link=power(.1))) ##
set.seed(1000)
n_sims =1000
Pss = list()
for(i in 1:length(Years)){
Pst = Ps
Pst$YEAR = Years[i]
Pst$AREA_SWEPT = mean(subset(sL,YEAR==Years[i],AREA_SWEPT)[,1])
Pss[[i]] = Pst
}
Ps = do.call(rbind,Pss)
a_lp_matrix = predict(object = aa, Ps,
type = "lpmatrix")
a_coef_mean = coef(aa)
a_vcov = vcov(aa)
a_par_coef_posterior = rmvn(n = n_sims,
mu = a_coef_mean,
V = a_vcov)
ilink = family(aa)$linkinv
preds = ilink(a_lp_matrix %*% t(a_par_coef_posterior))
apreds = as.data.frame(preds)
apreds$YEAR = Ps$YEAR
asa = as.data.frame(aggregate(.~YEAR,data=apreds,FUN=sum))
ag = apply(asa[,2:1001],1,quantile,0.5)/1000
aout = as.data.frame(cbind(asa$YEAR,apply(asa[,2:1001],1,quantile,0.5)/1000, apply(asa[,2:1001],1,quantile,0.025)/1000,apply(asa[,2:1001],1,quantile,0.975)/1000))
names(aout) = c('Year','B','lB','uB')
R0 = aout
write.csv(aout,file=file.path(fpf1,'ILTSCommB.csv'))
png(file=file.path(fpf1,'ILTSCommB.png'),units='in',width=10,height=8,pointsize=18, res=300,type='cairo')
plot(asa$YEAR,apply(asa[,2:1001],1,quantile,0.5)/1000,xlab='Year',ylab='Commercial Biomass',pch=16,ylim=c(0,32000))
arrows(asa$YEAR, y0 = apply(asa[,2:1001],1,quantile,0.025)/1000, y1 =apply(asa[,2:1001],1,quantile,0.975)/1000,length=0 )
lines(asa$YEAR,runmed(ag,k=3),col='salmon',lwd=2)
dev.off()
#area
R1area1 = as.data.frame(do.call(rbind,R1area))
names(R1area1) = c('Year','Area')
area = nrow(xyz)
R1area1$Prop = (area - R1area1$Area)/area
R1area1 = R1area1[order(R1area1$Year),]
png(file=file.path(fpf1,'ILTSPropArea5perkm.png'),units='in',width=10,height=8,pointsize=18, res=300,type='cairo')
plot(R1area1$Year,R1area1$Prop,pch=16,xlab='Year',ylab='Proportion of Total Area')
lines(R1area1$Year,runmed(R1area1$Prop,k=3),col='salmon',lwd=2)
dev.off()
##
####diffs
g = dplyr::bind_rows(R1surface)
g$yr = rep(Years, each=20131)
gg = pivot_wider(g,id_cols=c(plon,plat),values_from =z,names_from = yr)
gg$diff = gg$'2017'-gg$'2018'
################################################
###Recruits
# Survey Data
surveyLobsters34index<-LobsterSurveyProcess(lfa="L34", yrs=1996:2022, mths=c("Aug","Jul","Jun"), bin.size=2.5, Net='NEST',size.range=c(70,82.5),biomass=F)
surveyLobsters34index = lonlat2planar(surveyLobsters34index,"utm20", input_names=c("SET_LONG", "SET_LAT"))
surveyLobsters34index$dyear = decimal_date(as.Date(surveyLobsters34index$SET_DATE))
# Spatial temporal parameters
Years = 1996:2022
LFAs<-read.csv(file.path( project.datadirectory("bio.lobster"), "data","maps","LFAPolys.csv"))
LFAs = lonlat2planar(LFAs,"utm20", input_names=c("X", "Y"))
LFAs = LFAs[,-which(names(LFAs)%in%c('X','Y'))]
LFAs = rename.df(LFAs,c('plon','plat'),c('X','Y'))
#tweedie
#using the mpLC as a prob that the num caught is within the size class
sL = surveyLobsters34index
Years = unique(sL$YEAR)
#compound poisson regression with area swept as an offset
#model
f1 = formula(LobDen~as.factor(YEAR) + s(SET_DEPTH) + s(plon, plat,bs='ts' ,k=100))
aa = gam(f1,data=sL, family = Tweedie(p=1.25,link=power(.1))) ##
#Predictions from full model
load(file.path(project.datadirectory('bio.lobster'),'data','predspace.rdata')) #sq km
Ps = data.frame(EID=1:nrow(predSpace),predSpace[,c('plon','plat','z')])
Ps = rename.df(Ps,c('plon','plat','z'),c('X','Y','SET_DEPTH'))
key=findPolys(Ps,subset(LFAs,PID==34))
Ps = subset(Ps,EID%in%key$EID)
Ps = rename.df(Ps,c('X','Y'),c('plon','plat'))
# annual predictions
R1index=c()
R1area = list()
R1surface=list()
ilink <- family(aa)$linkinv # this is the inverse of the link function
for(i in 1:length(Years)){
require(mgcv)
#Ps$dyear =Years[i]+.5
Ps$YEAR =Years[i]
Ps$AREA_SWEPT = mean(sL$AREA_SWEPT)
plo = as.data.frame(predict(aa,Ps,type='link',se.fit=TRUE))
plo$upper = ilink(plo$fit - (1.96 * plo$se.fit))
plo$lower = ilink(plo$fit - (1.96 * plo$se.fit))
plo$fitted = ilink(plo$fit)
xyz = data.frame(Ps[,c('plon','plat')],z=ilink(plo$fit))
corners = data.frame(lon=c(-67.8,-65),lat=c(42.5,45))
R1area[[i]] = c(Years[i],length(which(xyz$z<5)))
planarMap( xyz, fn=paste("gamtwPAR1",Years[i],sep='.'), datascale=seq(0.1,10000,l=30), annot=Years[i],loc=fpf1, corners=corners,log.variable=T)
#planarMap( xyz, fn=paste("lobster.gambi.pred",Years[i],sep='.'), annot=Years[i],loc="output",corners=corners)
#planarMap( xyz, corners=corners)
R1surface[[i]]=xyz
R1index[i]= sum(xyz$z)
}
Years = 1996:2022
#using the posterior distribution model coefs
f1 = formula(LobDen~as.factor(YEAR) + s(SET_DEPTH) + s(plon, plat,bs='ts' ,k=100))
aa = gam(f1,data=sL, family = Tweedie(p=1.25,link=power(.1))) ##
set.seed(1000)
n_sims =1000
Pss = list()
for(i in 1:length(Years)){
Pst = Ps
Pst$YEAR = Years[i]
Pst$AREA_SWEPT = mean(subset(sL,YEAR==Years[i],AREA_SWEPT)[,1])
Pss[[i]] = Pst
}
Ps = do.call(rbind,Pss)
a_lp_matrix = predict(object = aa, Ps,
type = "lpmatrix")
a_coef_mean = coef(aa)
a_vcov = vcov(aa)
a_par_coef_posterior = rmvn(n = n_sims,
mu = a_coef_mean,
V = a_vcov)
ilink = family(aa)$linkinv
preds = ilink(a_lp_matrix %*% t(a_par_coef_posterior))
apreds = as.data.frame(preds)
apreds$YEAR = Ps$YEAR
asa = as.data.frame(aggregate(.~YEAR,data=apreds,FUN=sum))
ag = apply(asa[,2:1001],1,quantile,0.5)/1000
aout = as.data.frame(cbind(asa$YEAR,apply(asa[,2:1001],1,quantile,0.5)/1000, apply(asa[,2:1001],1,quantile,0.025)/1000,apply(asa[,2:1001],1,quantile,0.975)/1000))
names(aout) = c('Year','B','lB','uB')
rec = aout
write.csv(aout,file=file.path(fpf1,'ILTSRecruitN.csv'))
png(file=file.path(fpf1,'ILTSRecruitN.png'),units='in',width=10,height=8,pointsize=18, res=300,type='cairo')
plot(asa$YEAR,apply(asa[,2:1001],1,quantile,0.5)/1000,xlab='Year',ylab='Recruit abundance',pch=16,ylim=c(0,55000))
arrows(asa$YEAR, y0 = apply(asa[,2:1001],1,quantile,0.025)/1000, y1 =apply(asa[,2:1001],1,quantile,0.975)/1000,length=0 )
lines(asa$YEAR,runmed(ag,k=3),col='salmon',lwd=2)
dev.off()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.