R/annotate-panels.R

Defines functions annotate_any_panel specify_impact_panels

Documented in annotate_any_panel specify_impact_panels

#' IMPACT Panel Annotation of NA's
#'
#' @param gene_binary a processed gene_binary
#' @keywords internal
#' @return  a data frame iwth NAs inserted for genes not tested for given panel versions
#' @export
#'
#'
specify_impact_panels <- function(gene_binary) {

  gene_panels <- gnomeR::gene_panels

  # create data frame of sample IDs
  sample_panel_pair <- gene_binary["sample_id"]

  any_impact <- sum(stringr::str_detect(sample_panel_pair$sample_id,
                                        "-IM|-IH"))

  # check if there are any impact (based on sample ID)
  switch(any_impact == 0,
         cli::cli_abort("There are no IMPACT samples recognized (based on sample_id). If you wish to annotate
                   missingness based on a panel, please pass a data.frame of sample_ids and corresponding panels."))


  # get which IMPACT panel
  sample_panel_pair <- sample_panel_pair %>%
    mutate(panel_id = case_when(
      stringr::str_detect(.data$sample_id, "-IM3") ~ "IMPACT341",
      stringr::str_detect(.data$sample_id, "-IM5") ~ "IMPACT410",
      stringr::str_detect(.data$sample_id, "-IM6") ~ "IMPACT468",
      stringr::str_detect(.data$sample_id, "-IM7") ~ "IMPACT505",
      # heme panels
      stringr::str_detect(.data$sample_id, "-IH3") ~ "IMPACT-HEME-400",
      stringr::str_detect(.data$sample_id, "-IH4") ~ "IMPACT-HEME-468",
      TRUE ~ "no"
    ))

  # couldn't detect panel
  unk_impact_panel <- sample_panel_pair %>%
    filter(.data$panel_id == "no")

  if(nrow(unk_impact_panel) > 0) {
    cli::cli_alert("Couldn't infer IMPACT panel version from these sample_ids, therefore no NA panel annotation will be done for these: {unk_impact_panel$sample_id}")
  }

  return(sample_panel_pair)
}

#' Annotate Missing Gene Values According to Specific Panels
#'
#' @param sample_panel_pair a data frame of `sample_id`-`panel_id` pairs specifying panels to use for annotation of each sample
#' @param gene_binary a binary matrix of 0/1 indicating alteration yes/no for each sample
#' @keywords internal
#' @return a gene_binary annotated for missingness
#' @export

annotate_any_panel <- function(sample_panel_pair, gene_binary) {

  # if all "no", leave function
  switch(all(sample_panel_pair$panel_id == "no"),
         return(gene_binary))

  sample_panel_pair_nest <- sample_panel_pair %>%
    group_by(.data$panel_id) %>%
    summarise(samples_in_panel = list(.data$sample_id))

  # pull genes for given panels
  panels_needed <- unique(sample_panel_pair_nest$panel_id)

  gnomeR::gene_panels %>%
    filter(.data$gene_panel %in% panels_needed)

  # has sample IDs and genes for each panel
  sample_panel_pair_nest <- sample_panel_pair_nest %>%
    left_join(., gnomeR::gene_panels, by = c("panel_id" = "gene_panel")) %>%
    select(-"entrez_ids_in_panel")

  user_data_genes <- gene_binary %>%
    select(-"sample_id") %>%
    names() %>%
    gsub(".fus|.Del|.Amp|.cna", "", .)

  sample_panel_pair_nest <- sample_panel_pair_nest %>%
    mutate(na_genes_raw = purrr::map(.data$genes_in_panel,
                                     ~unique(setdiff(user_data_genes, .x)))) %>%
    mutate(na_genes = purrr::map(.data$na_genes_raw,
                                 ~c(
                                   .x,
                                   paste0(.x, ".fus"),
                                   paste0(.x, ".Del"),
                                   paste0(.x, ".Amp"),
                                   paste0(.x, ".cna")
                                 ))) %>%

    # TODO is there a better way to do this?
    mutate(na_genes =
             case_when(.data$panel_id == "no" ~ list(NULL),
                       TRUE ~ .data$na_genes)) %>%
    mutate(na_genes_raw =
             case_when(.data$panel_id == "no" ~ list(NULL),
                       TRUE ~ .data$na_genes_raw))


  annotated_data <- purrr::pmap_df(sample_panel_pair_nest,
                                   annotate_specific_panel,
                                   gene_binary = gene_binary)

  return(annotated_data)
}


#' Utility function  to insert NA's According to Panel
#'
#' @param gene_binary a processed binary matrix
#' @param panel_id name of gene panel
#' @param samples_in_panel samples to be annotated for each panel
#' @param na_genes genes to make NA
#' @param ... other args passed
#' @keywords internal
#' @return an annotated data frame
#' @export
#'
#'
annotate_specific_panel <- function(gene_binary,
                                    panel_id,
                                    samples_in_panel,
                                    na_genes, ...) {

  mut_sub <- gene_binary[gene_binary$sample_id %in% samples_in_panel,]
  index_na_genes <- stats::na.omit(match(na_genes, colnames(mut_sub)))

  # By default these return logical so coerce into numeric for checks later
  mut_sub[, index_na_genes] <- as.numeric(NA)

  return(mut_sub)

}


# Check which panels gene is on----------------------

#' provide a list of impact panels a provided gene is found within
#'
#' @param hugo_symbol a vector of hugo symbols
#'
#' @return a data frame with hugo symbols and the IMPACT panels on which they are
#' included
#' @keywords internal
#' @examples
#'
#' hugos <- unique(gnomeR::mutations$hugoGeneSymbol)[1:10]
#'
#' which_impact_panel(hugos)
#'
#' @export

which_impact_panel <- function(hugo_symbol) {

  im_panels <- c("IMPACT341", "IMPACT410",
                 "IMPACT468", "IMPACT505",
                 "IMPACT-HEME-400", "IMPACT-HEME-468")

  # get table of gene aliases (internal data)
  alias_table <- gnomeR::impact_alias_table %>%
    dplyr::select("hugo_symbol", "alias")

  # recode all genes to most common alias
  hugo_symbol_recode <- purrr::map_chr(hugo_symbol,
                                       ~resolve_alias(gene_to_check = .x,
                                                      alias_table = alias_table))
  x <- setdiff(hugo_symbol, hugo_symbol_recode)
  y <- setdiff(hugo_symbol_recode, hugo_symbol)

  if(length(x) > 0) {
    vec_recode <- purrr::map2_chr(x, y,
                                  ~paste0(.x, " recoded to ", .y))

    names(vec_recode) <- rep("!", times = length(vec_recode))

    cli::cli_inform(c(
      "The following genes were recoded to their common alias for panel lookup:",
      vec_recode))
  }

  gene_panels <- gnomeR::gene_panels %>%
    filter(.data$gene_panel %in% im_panels) %>%
    select("gene_panel", "genes_in_panel") %>%
    tidyr::unnest(cols = c("genes_in_panel"))

  df_im_gene <- expand.grid(gene_panel = im_panels,
                            genes_in_panel = hugo_symbol_recode)

 impact_results <- gene_panels %>%
    filter(.data$genes_in_panel %in% hugo_symbol_recode) %>%
    distinct() %>%
    mutate(fill = "yes") %>%
    full_join(df_im_gene, by = c("gene_panel", "genes_in_panel"))%>%
    mutate(fill = replace(.data$fill, is.na(.data$fill), "no"))  %>%
    tidyr::pivot_wider(
      names_from = "gene_panel",
      values_from = "fill")


  impact_results

}
MSKCC-Epi-Bio/gnomeR documentation built on Oct. 17, 2024, 3:39 p.m.