# Copyright 2024 Observational Health Data Sciences and Informatics
#
# This file is part of CohortMethod
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Get the cohort data from the server
#'
#' @description
#' This function executes a large set of SQL statements against the database in OMOP CDM format to
#' extract the data needed to perform the analysis.
#'
#' @details
#' Based on the arguments, the treatment and comparator cohorts are retrieved, as well as outcomes
#' occurring in exposed subjects. The treatment and comparator cohorts can be identified using the
#' DRUG_ERA table, or through user-defined cohorts in a cohort table either inside the CDM schema or
#' in a separate schema. Similarly, outcomes are identified using the CONDITION_ERA table or through
#' user-defined cohorts in a cohort table either inside the CDM schema or in a separate schema.
#' Covariates are automatically extracted from the appropriate tables within the CDM.
#'
#' **Important**: The target and comparator drug must not be included in the covariates, including any descendant
#' concepts. You will need to manually add the drugs and descendants to the `excludedCovariateConceptIds`
#' of the `covariateSettings` argument.
#'
#' The `removeduplicateSubjects` argument can have one of the following values:
#'
#' - `"keep all"`: Do not remove subjects that appear in both target and comparator cohort
#' - `"keep first"`: When a subjects appear in both target and comparator cohort, only keep whichever cohort is first in time.
#' - `"remove all"`: Remove subjects that appear in both target and comparator cohort completely from the analysis."
#'
#' If the `covariateSettings` include cohort-based covariates, and the `covariateCohortTable` is `NULL`, the
#' `covariateCohortDatabaseSchema` and `covariateCohortTable` will be set to the `exposureDatabaseSchema` and
#' `exposureTable`, respectively .
#'
#' @param connectionDetails An R object of type `connectionDetails` created using the
#' [DatabaseConnector::createConnectionDetails()] function.
#' @param cdmDatabaseSchema The name of the database schema that contains the OMOP CDM
#' instance. Requires read permissions to this database. On SQL
#' Server, this should specify both the database and the schema,
#' so for example 'cdm_instance.dbo'.
#' @param tempEmulationSchema Some database platforms like Oracle and Impala do not truly support temp tables. To
#' emulate temp tables, provide a schema with write privileges where temp tables
#' can be created.
#' @param targetId A unique identifier to define the target cohort. If
#' exposureTable = DRUG_ERA, targetId is a concept ID and all
#' descendant concepts within that concept ID will be used to
#' define the cohort. If exposureTable <> DRUG_ERA, targetId is
#' used to select the COHORT_DEFINITION_ID in the cohort-like table.
#' @param comparatorId A unique identifier to define the comparator cohort. If
#' exposureTable = DRUG_ERA, comparatorId is a concept ID and all
#' descendant concepts within that concept ID will be used to
#' define the cohort. If exposureTable <> DRUG_ERA, comparatorId
#' is used to select the COHORT_DEFINITION_ID in the cohort-like
#' table.
#' @param outcomeIds A list of cohort IDs used to define outcomes.
#' @param studyStartDate A calendar date specifying the minimum date that a cohort index
#' date can appear. Date format is 'yyyymmdd'.
#' @param studyEndDate A calendar date specifying the maximum date that a cohort index
#' date can appear. Date format is 'yyyymmdd'. Important: the study
#' end data is also used to truncate risk windows, meaning no
#' outcomes beyond the study end date will be considered.
#' @param exposureDatabaseSchema The name of the database schema that is the location where the
#' exposure data used to define the exposure cohorts is available.
#' @param exposureTable The tablename that contains the exposure cohorts. If
#' exposureTable <> DRUG_ERA, then expectation is `exposureTable` has
#' format of COHORT table: COHORT_DEFINITION_ID, SUBJECT_ID,
#' COHORT_START_DATE, COHORT_END_DATE.
#' @param outcomeDatabaseSchema The name of the database schema that is the location where the
#' data used to define the outcome cohorts is available.
#' @param outcomeTable The tablename that contains the outcome cohorts. If
#' outcomeTable <> CONDITION_OCCURRENCE, then expectation is
#' outcomeTable has format of COHORT table: COHORT_DEFINITION_ID,
#' SUBJECT_ID, COHORT_START_DATE, COHORT_END_DATE.
#' @param cdmVersion Define the OMOP CDM version used: currently supports "5".
#' @param firstExposureOnly Should only the first exposure per subject be included? Note
#' that this is typically done in the [createStudyPopulation()]
#' function, but can already be done here for efficiency reasons.
#' @param removeDuplicateSubjects Remove subjects that are in both the target and comparator
#' cohort? See details for allowed values.Note that this is typically done in the
#' `createStudyPopulation` function, but can already be done
#' here for efficiency reasons.
#' @param restrictToCommonPeriod Restrict the analysis to the period when both treatments are observed?
#' @param washoutPeriod The minimum required continuous observation time prior to index
#' date for a person to be included in the cohort. Note that this
#' is typically done in the `createStudyPopulation` function,
#' but can already be done here for efficiency reasons.
#' @param maxCohortSize If either the target or the comparator cohort is larger than
#' this number it will be sampled to this size. `maxCohortSize = 0`
#' indicates no maximum size.
#' @param covariateSettings An object of type `covariateSettings` as created using the
#' [FeatureExtraction::createCovariateSettings()] function.
#'
#' @return
#' A [CohortMethodData] object.
#'
#' @export
getDbCohortMethodData <- function(connectionDetails,
cdmDatabaseSchema,
tempEmulationSchema = getOption("sqlRenderTempEmulationSchema"),
targetId,
comparatorId,
outcomeIds,
studyStartDate = "",
studyEndDate = "",
exposureDatabaseSchema = cdmDatabaseSchema,
exposureTable = "drug_era",
outcomeDatabaseSchema = cdmDatabaseSchema,
outcomeTable = "condition_occurrence",
cdmVersion = "5",
firstExposureOnly = FALSE,
removeDuplicateSubjects = "keep all",
restrictToCommonPeriod = FALSE,
washoutPeriod = 0,
maxCohortSize = 0,
covariateSettings) {
errorMessages <- checkmate::makeAssertCollection()
checkmate::assertClass(connectionDetails, "ConnectionDetails", add = errorMessages)
checkmate::assertCharacter(cdmDatabaseSchema, len = 1, add = errorMessages)
checkmate::assertCharacter(tempEmulationSchema, len = 1, null.ok = TRUE, add = errorMessages)
checkmate::assertNumeric(targetId, add = errorMessages)
checkmate::assertNumeric(comparatorId, add = errorMessages)
checkmate::assertNumeric(outcomeIds, add = errorMessages)
checkmate::assertTRUE(all(c(targetId, comparatorId, outcomeIds) %% 1 == 0), add = errorMessages)
checkmate::assertCharacter(studyStartDate, len = 1, add = errorMessages)
checkmate::assertCharacter(studyEndDate, len = 1, add = errorMessages)
checkmate::assertCharacter(exposureDatabaseSchema, len = 1, add = errorMessages)
checkmate::assertCharacter(exposureTable, len = 1, add = errorMessages)
checkmate::assertCharacter(outcomeDatabaseSchema, len = 1, add = errorMessages)
checkmate::assertCharacter(outcomeTable, len = 1, add = errorMessages)
checkmate::assertCharacter(cdmVersion, len = 1, n.chars = 1, pattern = "^[5]$", add = errorMessages)
checkmate::assertLogical(firstExposureOnly, len = 1, add = errorMessages)
checkmate::assertChoice(removeDuplicateSubjects, c("keep all", "keep first", "remove all"), add = errorMessages)
checkmate::assertLogical(restrictToCommonPeriod, len = 1, add = errorMessages)
checkmate::assertInt(washoutPeriod, lower = 0, add = errorMessages)
checkmate::assertInt(maxCohortSize, lower = 0, add = errorMessages)
checkmate::assertList(covariateSettings, add = errorMessages)
checkmate::reportAssertions(collection = errorMessages)
dateCheck(studyStartDate)
dateCheck(studyEndDate)
if (studyStartDate != "" &&
regexpr("^[12][0-9]{3}[01][0-9][0-3][0-9]$", studyStartDate) == -1) {
stop("Study start date must have format YYYYMMDD")
}
if (studyEndDate != "" &&
regexpr("^[12][0-9]{3}[01][0-9][0-3][0-9]$", studyEndDate) == -1) {
stop("Study end date must have format YYYYMMDD")
}
connection <- DatabaseConnector::connect(connectionDetails)
on.exit(DatabaseConnector::disconnect(connection))
message("Constructing target and comparator cohorts")
renderedSql <- SqlRender::loadRenderTranslateSql(
sqlFilename = "CreateCohorts.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_database_schema = cdmDatabaseSchema,
exposure_database_schema = exposureDatabaseSchema,
exposure_table = exposureTable,
target_id = targetId,
comparator_id = comparatorId,
study_start_date = studyStartDate,
study_end_date = studyEndDate,
first_only = firstExposureOnly,
remove_duplicate_subjects = removeDuplicateSubjects,
washout_period = washoutPeriod,
restrict_to_common_period = restrictToCommonPeriod
)
DatabaseConnector::executeSql(connection, renderedSql)
if (maxCohortSize != 0) {
outList <- downSample(
connection = connection,
tempEmulationSchema = tempEmulationSchema,
targetId = targetId,
maxCohortSize = maxCohortSize
)
sampled <- outList$sampled
preSampleCounts <- outList$preSampleCounts
} else {
sampled <- FALSE
}
message("Fetching cohorts from server")
start <- Sys.time()
cohortSql <- SqlRender::loadRenderTranslateSql(
sqlFilename = "GetCohorts.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
target_id = targetId,
sampled = sampled
)
cohorts <- DatabaseConnector::querySql(
connection = connection,
sql = cohortSql,
snakeCaseToCamelCase = TRUE
)
cohorts$rowId <- as.numeric(cohorts$rowId)
ParallelLogger::logDebug(
"Fetched cohort total rows in target is ",
sum(cohorts$treatment),
", total rows in comparator is ",
sum(!cohorts$treatment)
)
if (nrow(cohorts) == 0) {
warning("Target and comparator cohorts are empty")
} else if (sum(cohorts$treatment == 1) == 0) {
warning("Target cohort is empty")
} else if (sum(cohorts$treatment == 0) == 0) {
warning("Comparator cohort is empty")
}
metaData <- list(
targetId = targetId,
comparatorId = comparatorId,
studyStartDate = studyStartDate,
studyEndDate = studyEndDate
)
if (firstExposureOnly || removeDuplicateSubjects != "keep all" || washoutPeriod != 0) {
rawCountSql <- SqlRender::loadRenderTranslateSql(
sqlFilename = "CountOverallExposedPopulation.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_database_schema = cdmDatabaseSchema,
exposure_database_schema = exposureDatabaseSchema,
exposure_table = tolower(exposureTable),
target_id = targetId,
comparator_id = comparatorId,
study_start_date = studyStartDate,
study_end_date = studyEndDate
)
rawCount <- DatabaseConnector::querySql(
connection = connection,
sql = rawCountSql,
snakeCaseToCamelCase = TRUE
)
if (nrow(rawCount) == 0) {
counts <- tibble(
description = "Original cohorts",
targetPersons = 0,
comparatorPersons = 0,
targetExposures = 0,
comparatorExposures = 0
)
} else {
counts <- tibble(
description = "Original cohorts",
targetPersons = rawCount$exposedCount[rawCount$treatment == 1],
comparatorPersons = rawCount$exposedCount[rawCount$treatment == 0],
targetExposures = rawCount$exposureCount[rawCount$treatment == 1],
comparatorExposures = rawCount$exposureCount[rawCount$treatment == 0]
)
}
metaData$attrition <- counts
label <- c()
if (firstExposureOnly) {
label <- c(label, "first exp. only")
}
if (removeDuplicateSubjects == "remove all") {
label <- c(label, "removed subs in both cohorts")
} else if (removeDuplicateSubjects == "keep first") {
label <- c(label, "first cohort only")
}
if (restrictToCommonPeriod) {
label <- c(label, "restrict to common period")
}
if (washoutPeriod) {
label <- c(label, paste(washoutPeriod, "days of obs. prior"))
}
label <- paste(label, collapse = " & ")
substring(label, 1) <- toupper(substring(label, 1, 1))
if (sampled) {
preSampleCounts$description <- label
metaData$attrition <-
rbind(metaData$attrition, preSampleCounts)
metaData$attrition <-
rbind(metaData$attrition, getCounts(cohorts, "Random sample"))
} else {
metaData$attrition <-
rbind(metaData$attrition, getCounts(cohorts, label))
}
} else {
if (sampled) {
preSampleCounts$description <- "Original cohorts"
metaData$attrition <- preSampleCounts
metaData$attrition <- rbind(
metaData$attrition,
getCounts(cohorts, "Random sample")
)
} else {
metaData$attrition <- getCounts(cohorts, "Original cohorts")
}
}
delta <- Sys.time() - start
message("Fetching cohorts took ", signif(delta, 3), " ", attr(delta, "units"))
if (sampled) {
cohortTable <- "#cohort_sample"
} else {
cohortTable <- "#cohort_person"
}
covariateSettings <- handleCohortCovariateBuilders(
covariateSettings = covariateSettings,
exposureDatabaseSchema = exposureDatabaseSchema,
exposureTable = exposureTable
)
covariateData <- FeatureExtraction::getDbCovariateData(
connection = connection,
oracleTempSchema = tempEmulationSchema,
cdmDatabaseSchema = cdmDatabaseSchema,
cdmVersion = cdmVersion,
cohortTable = cohortTable,
cohortTableIsTemp = TRUE,
rowIdField = "row_id",
covariateSettings = covariateSettings
)
ParallelLogger::logDebug(
"Fetched covariates total count is ",
nrow_temp(covariateData$covariates)
)
message("Fetching outcomes from server")
start <- Sys.time()
outcomeSql <- SqlRender::loadRenderTranslateSql(
sqlFilename = "GetOutcomes.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
cdm_database_schema = cdmDatabaseSchema,
outcome_database_schema = outcomeDatabaseSchema,
outcome_table = outcomeTable,
outcome_ids = outcomeIds,
sampled = sampled
)
outcomes <- DatabaseConnector::querySql(
connection = connection,
sql = outcomeSql,
snakeCaseToCamelCase = TRUE
)
outcomes$rowId <- as.numeric(outcomes$rowId)
metaData$outcomeIds <- outcomeIds
delta <- Sys.time() - start
message("Fetching outcomes took ", signif(delta, 3), " ", attr(delta, "units"))
ParallelLogger::logDebug("Fetched outcomes total count is ", nrow(outcomes))
# Remove temp tables:
renderedSql <- SqlRender::loadRenderTranslateSql(
sqlFilename = "RemoveCohortTempTables.sql",
packageName = "CohortMethod",
dbms = connectionDetails$dbms,
tempEmulationSchema = tempEmulationSchema,
sampled = sampled
)
DatabaseConnector::executeSql(
connection = connection,
sql = renderedSql,
progressBar = FALSE,
reportOverallTime = FALSE
)
covariateData$cohorts <- cohorts
covariateData$outcomes <- outcomes
attr(covariateData, "metaData") <- append(attr(covariateData, "metaData"), metaData)
class(covariateData) <- "CohortMethodData"
attr(class(covariateData), "package") <- "CohortMethod"
return(covariateData)
}
downSample <- function(connection,
tempEmulationSchema,
targetId,
maxCohortSize) {
sampled <- FALSE
renderedSql <- SqlRender::loadRenderTranslateSql(
"CountCohorts.sql",
packageName = "CohortMethod",
dbms = connection@dbms,
tempEmulationSchema = tempEmulationSchema,
target_id = targetId
)
counts <- DatabaseConnector::querySql(connection, renderedSql, snakeCaseToCamelCase = TRUE)
ParallelLogger::logDebug("Pre-sample total row count is ", sum(counts$rowCount))
preSampleCounts <- bind_cols(
countPreSample(id = 1, counts = counts),
countPreSample(id = 0, counts = counts)
)
if (preSampleCounts$targetExposures > maxCohortSize) {
message(
"Downsampling target cohort from ", preSampleCounts$targetExposures,
" to ", maxCohortSize
)
sampled <- TRUE
}
if (preSampleCounts$comparatorExposures > maxCohortSize) {
message(
"Downsampling comparator cohort from ", preSampleCounts$comparatorExposures,
" to ", maxCohortSize
)
sampled <- TRUE
}
if (sampled) {
renderedSql <- SqlRender::loadRenderTranslateSql(
"SampleCohorts.sql",
packageName = "CohortMethod",
dbms = connection@dbms,
tempEmulationSchema = tempEmulationSchema,
max_cohort_size = maxCohortSize
)
DatabaseConnector::executeSql(connection, renderedSql)
}
return(list(sampled = sampled, preSampleCounts = preSampleCounts))
}
countPreSample <- function(id, counts) {
preSampleCounts <- tibble(dummy = 0)
idx <- which(counts$treatment == id)
switch(id + 1,
{
personsCol <- "comparatorPersons"
exposuresCol <- "comparatorExposures"
},
{
personsCol <- "targetPersons"
exposuresCol <- "targetExposures"
}
)
preSampleCounts[personsCol] <- 0
preSampleCounts[exposuresCol] <- 0
if (length(idx) != 0) {
preSampleCounts[personsCol] <- counts$personCount[idx]
preSampleCounts[exposuresCol] <- counts$rowCount[idx]
}
preSampleCounts$dummy <- NULL
return(preSampleCounts)
}
handleCohortCovariateBuilders <- function(covariateSettings,
exposureDatabaseSchema,
exposureTable) {
if (is(covariateSettings, "covariateSettings")) {
covariateSettings <- list(covariateSettings)
}
for (i in 1:length(covariateSettings)) {
object <- covariateSettings[[i]]
if ("covariateCohorts" %in% names(object) &&
is.null(object$covariateCohortTable)) {
object$covariateCohortDatabaseSchema <- exposureDatabaseSchema
object$covariateCohortTable <- exposureTable
covariateSettings[[i]] <- object
}
}
return(covariateSettings)
}
dateCheck <- function(date) {
if (date != "") {
tryCatch({
dateFormatted <- paste0(
substr(x = date, start = 1, stop = 4), "-",
substr(x = date, start = 5, stop = 6), "-",
substr(x = date, start = 7, stop = 8)
)
date <- as.Date(dateFormatted)
}, error = function(e) {
stop(sprintf("Date: %s (%s) is not valid", date, dateFormatted))
})
checkmate::assertDate(date, lower = "1000-01-01", upper = "2999-12-31")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.