Arkas integrates kallisto into the R environment, so kallisto must be installed prior to Arkas calls. Arkas can also be used downstream of kallisto data production specifically for model comparisons.
library(arkas) library(TxDbLite) pathBase <- system.file("extdata", "", package="arkasData") fastaPath <- paste0(pathBase, "/fasta") fastqPath <- paste0(pathBase, "/fastq/demoFastqDir/") samples <- c(MrN="MrN", MrT="MrT") ## normally set by appSession fastaFiles <- c( "ERCC.fa.gz", ## spike-in controls "Homo_sapiens.RepBase.20_05.merged.fa.gz") ## build an index if it isn't already there (in artemisData, it is) indexName <- indexKallisto(fastaFiles=fastaFiles, fastaPath=fastaPath,makeUnique=TRUE)$indexName ## run pseudoalignments library(parallel) results <- mclapply(samples, runKallisto, indexName=indexName, fastqPath=fastqPath, fastaPath=fastaPath, bootstraps=100, outputPath="/data/output")
Heatmaps can be used to plot repeat elements. Here we plot the top 25 repeats with the highest standard deviation
suppressPackageStartupMessages(library(arkas)) suppressPackageStartupMessages(library(TxDbLite)) samples<-c("n1","n2","n4","s1","s2","s4") pathBase<-system.file("extdata",package="arkasData") merged <- mergeKallisto(samples, outputPath=pathBase) assays(merged) kallistoVersion(merged) transcriptomes(merged) tail(tpm(merged)) ## plot repeat element txn using (counts/bootstrap MADs) as "effect size" bySd <- function(x, k=25) { sds<-vector() for(i in 1:nrow(x)){ sds[i]<-sd(x[i,],na.rm=TRUE) } x[rev(order(sds))[seq_len(k)],] } inX<-tpm(merged) ComplexHeatmap::Heatmap(log(1+bySd(inX[213665:213782,])), column_title="Repeat transcription, teratoma vs. normal")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.