##'
##' **Author: Aydan Selek**
##' **Author: Sumeda Siriwardena**
##'
##' **Description:**
##'
##'
##'
##'
##' **Inputs:**
##'
##' * total trade data
##'
##' **Flag assignment:**
##'
##' None
## Load the libraries
knitr::opts_chunk$set(echo = FALSE, eval = FALSE)
library(data.table)
library(faoswsTrade)
library(faosws)
library(stringr)
library(scales)
library(faoswsUtil)
library(faoswsFlag)
library(tidyr)
library(dplyr, warn.conflicts = FALSE)
library(openxlsx)
library(utils)
options(warn=-1)
`%!in%` = Negate(`%in%`)
send_mail <- function(from = NA, to = NA, subject = NA,
body = NA, remove = FALSE) {
if (missing(from)) from <- 'no-reply@fao.org'
if (missing(to)) {
if (exists('swsContext.userEmail')) {
to <- swsContext.userEmail
}
}
if (is.null(to)) {
stop('No valid email in `to` parameter.')
}
if (missing(subject)) stop('Missing `subject`.')
if (missing(body)) stop('Missing `body`.')
if (length(body) > 1) {
body <-
sapply(
body,
function(x) {
if (file.exists(x)) {
# https://en.wikipedia.org/wiki/Media_type
file_type <-
switch(
tolower(sub('.*\\.([^.]+)$', '\\1', basename(x))),
txt = 'text/plain',
csv = 'text/csv',
png = 'image/png',
jpeg = 'image/jpeg',
jpg = 'image/jpeg',
gif = 'image/gif',
xls = 'application/vnd.ms-excel',
xlsx = 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet',
doc = 'application/msword',
docx = 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
pdf = 'application/pdf',
zip = 'application/zip',
# https://stackoverflow.com/questions/24725593/mime-type-for-serialized-r-objects
rds = 'application/octet-stream'
)
if (is.null(file_type)) {
stop(paste(tolower(sub('.*\\.([^.]+)$', '\\1', basename(x))),
'is not a supported file type.'))
} else {
res <- sendmailR:::.file_attachment(x, basename(x), type = file_type)
if (remove == TRUE) {
unlink(x)
}
return(res)
}
} else {
return(x)
}
}
)
} else if (!is.character(body)) {
stop('`body` should be either a string or a list.')
}
sendmailR::sendmail(from, to, subject, as.list(body))
}
R_SWS_SHARE_PATH <- Sys.getenv("R_SWS_SHARE_PATH")
if (CheckDebug()) {
library(faoswsModules)
SETTINGS = ReadSettings("modules/trade_commodity_tables/sws.yml")
## Define where your certificates are stored
faosws::SetClientFiles(SETTINGS[["certdir"]])
## Get session information from SWS. Token must be obtained from web interface
GetTestEnvironment(baseUrl = SETTINGS[["server"]],
token = SETTINGS[["token"]])
}
# Parameters
min_year = as.numeric(swsContext.computationParams$min_year)
max_year = as.numeric(swsContext.computationParams$max_year)
year <- as.integer(min_year:max_year)
# year <- as.integer(2010:2018)
number_of_year <- as.integer(length(year))
USER <- regmatches(swsContext.username, regexpr("(?<=/).+$", swsContext.username, perl = TRUE))
allm49 <-
GetCodeList("trade", "total_trade_cpc_m49", "geographicAreaM49")[type == "country", code] %>%
Dimension(name = "geographicAreaM49", keys = .)
allElementsDim <-
c( "5610", "5910", "5622", "5922", "5630", "5930",
"5608", "5609", "5908", "5909", "5638", "5639", "5938", "5939") %>% #,
## UV elements:
#"5638", "5639", "5630", "5938", "5939", "5930") %>%
Dimension(name = "measuredElementTrade", keys = .)
# CPC codes
cpc_codes_list <- ReadDatatable('commodity_list_for_total_trade_tables')
# cpc_codes <- cpc_codes[is_livestock=='No']
cpc_codes_list <- cpc_codes_list[order(commodity_code)]
cpc_codes <- unique(cpc_codes_list$commodity_code)
animals <- cpc_codes_list[is_livestock=='Yes', commodity_code]
allItemsDim <-
GetCodeList("trade", "total_trade_cpc_m49", "measuredItemCPC")[code %in% cpc_codes][,code] %>%
Dimension(name = "measuredItemCPC", keys = .)
allYearsDim <- Dimension(name = "timePointYears", keys = as.character(year))
totaltradekey <-
DatasetKey(
domain = "trade",
dataset = "total_trade_cpc_m49",
dimensions =
list(
allm49,
allElementsDim,
allItemsDim,
allYearsDim
)
)
tradeData <- GetData(totaltradekey) # Trade data
tradeData <- tradeData[!(measuredItemCPC %in% animals & measuredElementTrade %in% c("5610", "5910")),]
continentCodes <- ReadDatatable('continent_country_mapping_for_total_trade_tables') # Continent-country mapping
small_animals <- unique(tradeData[measuredElementTrade=='5609', measuredItemCPC])
big_animals <- unique(tradeData[measuredElementTrade=='5608', measuredItemCPC])
crops <- unique(cpc_codes_list[is_livestock=='No', commodity_code])
timeseriesData_small_animals <- as.data.table(expand.grid(timePointYears = as.character(min_year:max_year),
geographicAreaM49 = unique(tradeData$geographicAreaM49),
measuredElementTrade = c(unique(tradeData[measuredItemCPC %in% small_animals, measuredElementTrade]),
"Import - Export", "(Import/Export) - 1", "Status"),
measuredItemCPC = unique(small_animals)))
timeseriesData_big_animals <- as.data.table(expand.grid(timePointYears = as.character(min_year:max_year),
geographicAreaM49 = unique(tradeData$geographicAreaM49),
measuredElementTrade = c(unique(tradeData[measuredItemCPC %in% big_animals, measuredElementTrade]),
"Import - Export", "(Import/Export) - 1", "Status"),
measuredItemCPC = unique(big_animals)))
timeseriesData_crops <- as.data.table(expand.grid(timePointYears = as.character(min_year:max_year),
geographicAreaM49 = unique(tradeData$geographicAreaM49),
measuredElementTrade = c(unique(tradeData[measuredItemCPC %in% crops, measuredElementTrade]),
"Import - Export", "(Import/Export) - 1", "Status"),
measuredItemCPC = unique(crops)))
timeseriesData <- do.call('rbind', list(timeseriesData_crops, timeseriesData_big_animals, timeseriesData_small_animals))
timeseriesData <- merge(timeseriesData, tradeData, by=c("geographicAreaM49","measuredElementTrade","measuredItemCPC", "timePointYears"),all.x = TRUE)
timeseriesData[is.na(Value), Value := 0]
# European Union member countries are included to the also to the Europe continent (Cyprus to Asia)
# In order to avoid double counting, we need threat them only as Eurpean Union and not include to the other country group
european_countries <- unique(continentCodes[country_group=='European Union', m49_country_code])
continentCodes <- continentCodes[m49_country_code %in% european_countries, country_group:= "European Union"]
continentCodes <- unique(continentCodes)
timeseriesData <- merge(timeseriesData, continentCodes, by.x=c("geographicAreaM49"),by.y = c("m49_country_code"), all.x = TRUE)
setnames(timeseriesData, "country_group", "Country Group")
# EX- WAY OF SUMEDA (DOUBLE COUNTED)
# # Europea Union Excluded
# timeseriesData_without_EU <- merge(timeseriesData, continentCodes[country_group != "European Union"], by.x=c("geographicAreaM49"),by.y = c("m49_country_code"), all.x = TRUE)
# timeseriesData_without_EU <- timeseriesData_without_EU[!is.na(country_group)]
# # Only EU
# timeseriesData_with_EU <- merge(timeseriesData, continentCodes[country_group == "European Union"], by.x=c("geographicAreaM49"),by.y = c("m49_country_code"), all.x = TRUE)
# timeseriesData_with_EU <- timeseriesData_with_EU[!is.na(country_group)]
# timeseriesData <- rbind(timeseriesData_with_EU,timeseriesData_without_EU)
# Country wise calculation
timeseriesData[, Value := ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% crops,
round(Value[measuredElementTrade == "5610"] - Value[measuredElementTrade == "5910"], 0), Value),
by=c("geographicAreaM49","Country Group","measuredItemCPC","timePointYears")]
timeseriesData[, Value := ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% big_animals,
round(Value[measuredElementTrade == "5608"]-Value[measuredElementTrade == "5908"],0), Value),
by=c("geographicAreaM49","Country Group","measuredItemCPC","timePointYears")]
timeseriesData[, Value := ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% small_animals,
round(Value[measuredElementTrade == "5609"]-Value[measuredElementTrade == "5909"],0), Value),
by=c("geographicAreaM49","Country Group","measuredItemCPC","timePointYears")]
timeseriesData[, Value := ifelse(measuredElementTrade %in% c("(Import/Export) - 1") & measuredItemCPC %in% crops,
round(((Value[measuredElementTrade == "5610"]/Value[measuredElementTrade == "5910"])-1)*100,0), Value),
by=c("geographicAreaM49","Country Group","measuredItemCPC","timePointYears")]
timeseriesData[, Value := ifelse(measuredElementTrade %in% c("(Import/Export) - 1") & measuredItemCPC %in% big_animals,
round(((Value[measuredElementTrade == "5608"]/Value[measuredElementTrade == "5908"])-1)*100,0), Value),
by=c("geographicAreaM49","Country Group","measuredItemCPC","timePointYears")]
timeseriesData[, Value := ifelse(measuredElementTrade %in% c("(Import/Export) - 1") & measuredItemCPC %in% small_animals,
round(((Value[measuredElementTrade == "5609"]/Value[measuredElementTrade == "5909"])-1)*100,0), Value),
by=c("geographicAreaM49","Country Group","measuredItemCPC","timePointYears")]
timeseriesData[Value == "Inf", Value := NA]
timeseriesData[is.nan(Value), Value := NA]
timeseriesData <- timeseriesData[order(measuredItemCPC, `Country Group`, timePointYears)]
# Calculate the growth of import and export
growthData <- timeseriesData[measuredElementTrade %in% c("5610","5910", "5608","5908","5609","5909")]
growthData <- dcast.data.table(growthData, measuredItemCPC+ timePointYears+ geographicAreaM49+ `Country Group` ~
measuredElementTrade, value.var = c("Value"))
growthData[measuredItemCPC %in% crops, Import_growth := round((`5610` - lag(`5610`))/lag(`5610`),0) , by = c("geographicAreaM49","measuredItemCPC", "Country Group")]
growthData[measuredItemCPC %in% crops, Export_growth := round((`5910` - lag(`5910`))/lag(`5910`),0) , by = c("geographicAreaM49","measuredItemCPC", "Country Group")]
growthData[measuredItemCPC %in% big_animals,
Import_growth := round((`5608` - lag(`5608`))/lag(`5608`),0) , by = c("geographicAreaM49","measuredItemCPC", "Country Group")]
growthData[measuredItemCPC %in% big_animals,
Export_growth := round((`5908` - lag(`5908`))/lag(`5908`),0) , by = c("geographicAreaM49","measuredItemCPC", "Country Group")]
growthData[measuredItemCPC %in% small_animals,
Import_growth := round((`5609` - lag(`5609`))/lag(`5609`),0) , by = c("geographicAreaM49","measuredItemCPC", "Country Group")]
growthData[measuredItemCPC %in% small_animals,
Export_growth := round((`5909` - lag(`5909`))/lag(`5909`),0) , by = c("geographicAreaM49","measuredItemCPC", "Country Group")]
growthData[, c("5610", "5910", "5608", "5908", "5609", "5909") := NULL]
growthData<- melt.data.table(growthData, id.vars = c("measuredItemCPC","timePointYears","geographicAreaM49","Country Group"),
measure.vars=c("Import_growth","Export_growth"),
value.name= "Value")
setnames(growthData, "variable", "measuredElementTrade")
growthData[is.nan(Value), Value := NA]
growthData[, c("flagObservationStatus", "flagMethod"):= NA]
timeseriesData <- rbind(timeseriesData,growthData)
timeseriesData[Value == "Inf", Value := NA]
timeseriesData[measuredElementTrade == "Status", Value := NA]
timeseriesData <-
timeseriesData[
measuredElementTrade == "(Import/Export) - 1",
.(geographicAreaM49,`Country Group`, measuredItemCPC, timePointYears, s = between(Value, -5, 5))
][
timeseriesData,
on = c("geographicAreaM49", "Country Group","measuredItemCPC","timePointYears")
][
measuredElementTrade == "Status", Value := s * 1
][,
s := NULL
]
timeseriesData[, Value:= round(Value, 0)] # Country wise calculation will be reasumed
# Region wise calculation
timeseriesDataRegion <- copy(timeseriesData)
timeseriesDataRegion <- subset(timeseriesDataRegion, measuredElementTrade %in% c("5610", "5910", "5622", "5922", "5630", "5930",
"5608", "5609", "5908", "5909", "5638", "5938", "5639", "5939",
"Import - Export", "(Import/Export) - 1", "Status") )
timeseriesDataRegion[, geographicAreaM49:= NULL]
timeseriesDataRegion[, c("flagObservationStatus", "flagMethod"):= NULL]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("Import - Export", "(Import/Export) - 1", "5630", "5930","5638","5938","5639","5939", "Status"), NA,Value),
by=c("Country Group", "measuredItemCPC", "timePointYears")]
# Aggregate the Quantity and Value elements
timeseriesDataRegion[, Agg_Sum := ifelse(measuredElementTrade %in% c("5610","5910", "5608","5609","5908","5909","5622","5922"), sum(Value), Value),
by = list(measuredItemCPC, `Country Group`, measuredElementTrade, timePointYears)]
timeseriesDataRegion[, c("Value"):= NULL]
timeseriesDataRegion <- unique(timeseriesDataRegion)
setnames(timeseriesDataRegion, c("Agg_Sum"),c("Value"))
# Manage other ad-hoc elements for tyhe regional calculation
timeseriesDataRegion[, Value:= ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% crops,
round(Value[measuredElementTrade == "5610"]-Value[measuredElementTrade == "5910"],0), Value),
by=c("Country Group", "measuredItemCPC", "timePointYears")]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% big_animals,
round(Value[measuredElementTrade == "5608"]-Value[measuredElementTrade == "5908"],0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% small_animals,
round(Value[measuredElementTrade == "5609"]-Value[measuredElementTrade == "5909"],0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
timeseriesDataRegion[, Value:= ifelse(measuredElementTrade %in% c("5630") & measuredItemCPC %in% crops,
round((Value[measuredElementTrade == "5622"]*1000)/Value[measuredElementTrade == "5610"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("5638") & measuredItemCPC %in% big_animals,
round((Value[measuredElementTrade == "5622"]*1000)/Value[measuredElementTrade == "5608"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("5639") & measuredItemCPC %in% small_animals,
round((Value[measuredElementTrade == "5622"]*1000)/Value[measuredElementTrade == "5609"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
timeseriesDataRegion[, Value:= ifelse(measuredElementTrade %in% c("5930") & measuredItemCPC %in% crops,
round((Value[measuredElementTrade == "5922"]*1000)/Value[measuredElementTrade == "5910"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("5938") & measuredItemCPC %in% big_animals,
round((Value[measuredElementTrade == "5922"]*1000)/Value[measuredElementTrade == "5908"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("5939") & measuredItemCPC %in% small_animals,
round((Value[measuredElementTrade == "5922"]*1000)/Value[measuredElementTrade == "5909"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
timeseriesDataRegion[, Value:= ifelse(measuredElementTrade %in% c("(Import/Export) - 1") & measuredItemCPC %in% crops,
round(((Value[measuredElementTrade == "5610"]/Value[measuredElementTrade == "5910"])-1)*100,0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("(Import/Export) - 1")& measuredItemCPC %in% big_animals,
round(((Value[measuredElementTrade == "5608"]/Value[measuredElementTrade == "5908"])-1)*100,0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
timeseriesDataRegion[, Value := ifelse(measuredElementTrade %in% c("(Import/Export) - 1")& measuredItemCPC %in% small_animals,
round(((Value[measuredElementTrade == "5609"]/Value[measuredElementTrade == "5909"])-1)*100,0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
timeseriesDataRegion <- timeseriesDataRegion[order(measuredItemCPC, `Country Group`, timePointYears)]
growthDataRe <- timeseriesDataRegion[measuredElementTrade %in% c("5610","5910", "5608", "5908", "5609", "5909")]
growthDataRe <- dcast.data.table(growthDataRe, measuredItemCPC+timePointYears+`Country Group` ~ measuredElementTrade, value.var = c("Value"))
growthDataRe[measuredItemCPC %in% crops, Import_growth := round(((`5610` - lag(`5610`))/lag(`5610`))*100, 0) , by = c("measuredItemCPC", "Country Group")]
growthDataRe[measuredItemCPC %in% crops, Export_growth := round(((`5910` - lag(`5910`))/lag(`5910`))*100, 0) , by = c("measuredItemCPC", "Country Group")]
growthDataRe[measuredItemCPC %in% big_animals,
Import_growth := round(((`5608` - lag(`5608`))/lag(`5608`))*100,0) , by = c("measuredItemCPC", "Country Group")]
growthDataRe[measuredItemCPC %in% big_animals,
Export_growth := round(((`5908` - lag(`5908`))/lag(`5908`))*100,0) , by = c("measuredItemCPC", "Country Group")]
growthDataRe[measuredItemCPC %in% small_animals,
Import_growth := round((`5609` - lag(`5609`))/lag(`5609`),0) , by = c("measuredItemCPC", "Country Group")]
growthDataRe[measuredItemCPC %in% small_animals,
Export_growth := round((`5909` - lag(`5909`))/lag(`5909`),0) , by = c("measuredItemCPC", "Country Group")]
growthDataRe[, c("5610","5910", "5608","5908","5609","5909") := NULL]
growthDataRe<- melt.data.table(growthDataRe, id.vars = c("measuredItemCPC","timePointYears","Country Group"),
measure.vars=c("Import_growth","Export_growth"), value.name= "Value")
setnames(growthDataRe, "variable", "measuredElementTrade")
timeseriesDataRegion <- rbind(timeseriesDataRegion, growthDataRe)
timeseriesDataRegion[Value == "Inf", Value := NA]
timeseriesDataRegion[is.nan(Value), Value := NA]
timeseriesDataRegion <-
timeseriesDataRegion[
measuredElementTrade == "(Import/Export) - 1",
.(`Country Group`, measuredItemCPC, timePointYears, s = between(Value, -5, 5))
][
timeseriesDataRegion,
on = c("Country Group","measuredItemCPC","timePointYears")
][
measuredElementTrade == "Status", Value := s * 1
][,
s := NULL
]
timeseriesDataRegion[measuredElementTrade == "5610", measuredElementTrade := "Import_Quantity (t)"]
timeseriesDataRegion[measuredElementTrade == "5910", measuredElementTrade := "Export_Quantity (t)"]
timeseriesDataRegion[measuredElementTrade == "5608", measuredElementTrade := "Import_Quantity [head]"]
timeseriesDataRegion[measuredElementTrade == "5908", measuredElementTrade := "Export_Quantity [head]"]
timeseriesDataRegion[measuredElementTrade == "5609", measuredElementTrade := "Import_Quantity [1000 head]"]
timeseriesDataRegion[measuredElementTrade == "5909", measuredElementTrade := "Export_Quantity [1000 head]"]
timeseriesDataRegion[measuredElementTrade == "5622", measuredElementTrade:= "Import Value [1000 $]"]
timeseriesDataRegion[measuredElementTrade == "5922", measuredElementTrade:= "Export Value [1000 $]"]
timeseriesDataRegion[measuredElementTrade == "5630", measuredElementTrade:= "Import UV [$/t]"]
timeseriesDataRegion[measuredElementTrade == "5930", measuredElementTrade:= "Export UV [$/t]"]
timeseriesDataRegion[measuredElementTrade == "5638", measuredElementTrade := "Import UV [$/head]"]
timeseriesDataRegion[measuredElementTrade == "5938", measuredElementTrade := "Export UV [$/head]"]
timeseriesDataRegion[measuredElementTrade == "5639", measuredElementTrade := "Import UV [$/1000 head]"]
timeseriesDataRegion[measuredElementTrade == "5939", measuredElementTrade := "Export UV [$/1000 head]"]
setnames(timeseriesDataRegion, "measuredItemCPC", "measuredItemFbsSua")
timeseriesDataRegion <- nameData("sua-fbs", "sua_unbalanced", timeseriesDataRegion) # Name SWS keys
timeseriesDataRegion[, c("timePointYears_description"):= NULL]
timeseriesDataRegion[, Value:= round(Value,0)]
setnames(timeseriesDataRegion, c("measuredItemFbsSua","measuredItemFbsSua_description"), c("Commodity CPC Code", "Commodity name"))
timeseriesDataRegion <- dcast.data.table(timeseriesDataRegion, `Country Group`+ `Commodity CPC Code`+ `Commodity name`+ measuredElementTrade
~ timePointYears, value.var = c("Value"))
setnames(timeseriesDataRegion, c("measuredElementTrade"), c("Trade Dimension"))
timeseriesDataRegion[, Country:= NA]
setcolorder(timeseriesDataRegion, c("Country Group","Country","Commodity name","Commodity CPC Code","Trade Dimension"
,c(as.character(year))))
timeseriesDataRegion[, `Trade Dimension`:= as.character(`Trade Dimension`)] # Region wise calculation finalised
# World wise calculation
world <- subset(timeseriesData, measuredElementTrade %in% c("5610","5910","5622","5922","5630","5930",
"5608","5609","5908","5909","5638","5938","5639","5939",
"Import - Export", "(Import/Export) - 1","Status") )
world[, c("flagObservationStatus", "flagMethod"):=NULL]
world <- world[!duplicated(world[, c("geographicAreaM49", "measuredItemCPC", "timePointYears", "measuredElementTrade"), with = FALSE])]
world[, Value:= ifelse(measuredElementTrade %in% c("Import - Export","(Import/Export) - 1","5630","5930","Status"), NA,Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
world[, geographicAreaM49 :=NULL]
world[, `Country Group`:= c("World")]
# Aggregate the Quantity and Value elements
world[, Agg_Sum := ifelse(measuredElementTrade %in% c("5610","5910", "5608","5609","5908","5909", "5622","5922"), sum(Value), Value),
by = list(measuredItemCPC,`Country Group`, measuredElementTrade,timePointYears)]
world[,c("Value") := NULL]
world <- unique(world)
setnames(world, c("Agg_Sum"),c("Value"))
# Manage other ad-hoc elements for tyhe regional calculation
world[, Value:= ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% crops,
round(Value[measuredElementTrade == "5610"]-Value[measuredElementTrade == "5910"],0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
world[, Value := ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% big_animals,
round(Value[measuredElementTrade == "5608"]-Value[measuredElementTrade == "5908"],0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
world[, Value := ifelse(measuredElementTrade %in% c("Import - Export") & measuredItemCPC %in% small_animals,
round(Value[measuredElementTrade == "5609"]-Value[measuredElementTrade == "5909"],0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
world[, Value:= ifelse(measuredElementTrade %in% c("5630") & measuredItemCPC %in% crops,
round((Value[measuredElementTrade == "5622"]*1000)/Value[measuredElementTrade == "5610"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
world[, Value := ifelse(measuredElementTrade %in% c("5638") & measuredItemCPC %in% big_animals,
round((Value[measuredElementTrade == "5622"]*1000)/Value[measuredElementTrade == "5608"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
world[, Value := ifelse(measuredElementTrade %in% c("5639") & measuredItemCPC %in% small_animals,
round((Value[measuredElementTrade == "5622"]*1000)/Value[measuredElementTrade == "5609"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
world[, Value:= ifelse(measuredElementTrade %in% c("5930") & measuredItemCPC %in% crops,
round((Value[measuredElementTrade == "5922"]*1000)/Value[measuredElementTrade == "5910"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
world[, Value := ifelse(measuredElementTrade %in% c("5938") & measuredItemCPC %in% big_animals,
round((Value[measuredElementTrade == "5922"]*1000)/Value[measuredElementTrade == "5908"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
world[, Value := ifelse(measuredElementTrade %in% c("5939") & measuredItemCPC %in% small_animals,
round((Value[measuredElementTrade == "5922"]*1000)/Value[measuredElementTrade == "5909"],0), Value),
by=c("Country Group","measuredItemCPC" ,"timePointYears")]
world[, Value:= ifelse(measuredElementTrade %in% c("(Import/Export) - 1") & measuredItemCPC %in% crops,
round(((Value[measuredElementTrade == "5610"]/Value[measuredElementTrade == "5910"])-1)*100), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
world[, Value := ifelse(measuredElementTrade %in% c("(Import/Export) - 1")& measuredItemCPC %in% big_animals,
round(((Value[measuredElementTrade == "5608"]/Value[measuredElementTrade == "5908"])-1)*100,0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
world[, Value := ifelse(measuredElementTrade %in% c("(Import/Export) - 1")& measuredItemCPC %in% small_animals,
round(((Value[measuredElementTrade == "5609"]/Value[measuredElementTrade == "5909"])-1)*100,0), Value),
by=c("Country Group","measuredItemCPC","timePointYears")]
world <- world[order(measuredItemCPC, `Country Group`, timePointYears)]
growthWorld <- world[measuredElementTrade %in% c("5608","5908","5609","5909","5610","5910")]
growthWorld <- dcast.data.table(growthWorld, measuredItemCPC+timePointYears+`Country Group` ~ measuredElementTrade, value.var = c("Value"))
growthWorld[measuredItemCPC %in% crops, Import_growth:= round(((`5610` - lag(`5610`))/lag(`5610`))*100,0) , by = c("measuredItemCPC", "Country Group")]
growthWorld[measuredItemCPC %in% crops, Export_growth:= round(((`5910` - lag(`5910`))/lag(`5910`))*100,0) , by = c("measuredItemCPC", "Country Group")]
growthWorld[measuredItemCPC %in% big_animals,
Import_growth := round(((`5608` - lag(`5608`))/lag(`5608`))*100,0) , by = c("measuredItemCPC", "Country Group")]
growthWorld[measuredItemCPC %in% big_animals,
Export_growth := round(((`5908` - lag(`5908`))/lag(`5908`))*100,0) , by = c("measuredItemCPC", "Country Group")]
growthWorld[measuredItemCPC %in% small_animals,
Import_growth := round((`5609` - lag(`5609`))/lag(`5609`),0) , by = c("measuredItemCPC", "Country Group")]
growthWorld[measuredItemCPC %in% small_animals,
Export_growth := round((`5909` - lag(`5909`))/lag(`5909`),0) , by = c("measuredItemCPC", "Country Group")]
growthWorld[, c("5610","5910", "5608","5908","5609","5909") := NULL]
growthWorld<- melt.data.table(growthWorld, id.vars = c("measuredItemCPC","timePointYears","Country Group"),
measure.vars=c("Import_growth","Export_growth"), value.name = "Value")
setnames(growthWorld, "variable", "measuredElementTrade")
world <- rbind(world,growthWorld)
world[ is.nan(Value), Value := NA]
world[ Value == "Inf" , Value := NA]
world <-
world[
measuredElementTrade == "(Import/Export) - 1",
.(`Country Group`, measuredItemCPC, timePointYears, s = between(Value, -5, 5))
][
world,
on = c("Country Group","measuredItemCPC","timePointYears")
][
measuredElementTrade == "Status", Value := s * 1
][,
s := NULL
]
world[measuredElementTrade == "5610", measuredElementTrade := "Import_Quantity (t)"]
world[measuredElementTrade == "5910", measuredElementTrade := "Export_Quantity (t)"]
world[measuredElementTrade == "5608", measuredElementTrade := "Import_Quantity [head]"]
world[measuredElementTrade == "5908", measuredElementTrade := "Export_Quantity [head]"]
world[measuredElementTrade == "5609", measuredElementTrade := "Import_Quantity [1000 head]"]
world[measuredElementTrade == "5909", measuredElementTrade := "Export_Quantity [1000 head]"]
world[measuredElementTrade == "5622", measuredElementTrade := "Import Value [1000 $]"]
world[measuredElementTrade == "5922", measuredElementTrade := "Export Value [1000 $]"]
world[measuredElementTrade == "5630", measuredElementTrade := "Import UV [$/t]"]
world[measuredElementTrade == "5930", measuredElementTrade := "Export UV [$/t]"]
world[measuredElementTrade == "5638", measuredElementTrade := "Import UV [$/head]"]
world[measuredElementTrade == "5938", measuredElementTrade := "Export UV [$/head]"]
world[measuredElementTrade == "5639", measuredElementTrade := "Import UV [$/1000 head]"]
world[measuredElementTrade == "5939", measuredElementTrade := "Export UV [$/1000 head]"]
setnames(world,"measuredItemCPC","measuredItemFbsSua")
world <- nameData("sua-fbs", "sua_unbalanced",world)
world[, c("timePointYears_description") := NULL]
world[, Value := round(Value,0)]
setnames(world, c("measuredItemFbsSua", "measuredItemFbsSua_description"), c("Commodity CPC Code", "Commodity name"))
world <- dcast.data.table(world, `Country Group`+ `Commodity CPC Code`+ `Commodity name`+ measuredElementTrade
~ timePointYears, value.var = c("Value"))
setnames(world, c( "measuredElementTrade"), c("Trade Dimension"))
world[,Country:= NA]
setcolorder(world, c("Country Group","Country","Commodity name","Commodity CPC Code","Trade Dimension",
c(as.character(year))))
world[, `Trade Dimension` := as.character(`Trade Dimension`)] # World wise calculation finalised
# Country wise calculation resume
country <- copy(timeseriesData)
country[measuredElementTrade == "5610", measuredElementTrade := "Import_Quantity (t)"]
country[measuredElementTrade == "5910", measuredElementTrade := "Export_Quantity (t)"]
country[measuredElementTrade == "5608", measuredElementTrade := "Import_Quantity [head]"]
country[measuredElementTrade == "5908", measuredElementTrade := "Export_Quantity [head]"]
country[measuredElementTrade == "5609", measuredElementTrade := "Import_Quantity [1000 head]"]
country[measuredElementTrade == "5909", measuredElementTrade := "Export_Quantity [1000 head]"]
country[measuredElementTrade == "5622", measuredElementTrade := "Import Value [1000 $]"]
country[measuredElementTrade == "5922", measuredElementTrade := "Export Value [1000 $]"]
country[measuredElementTrade == "5630", measuredElementTrade := "Import UV [$/t]"]
country[measuredElementTrade == "5930", measuredElementTrade := "Export UV [$/t]"]
country[measuredElementTrade == "5638", measuredElementTrade := "Import UV [$/head]"]
country[measuredElementTrade == "5938", measuredElementTrade := "Export UV [$/head]"]
country[measuredElementTrade == "5639", measuredElementTrade := "Import UV [$/1000 head]"]
country[measuredElementTrade == "5939", measuredElementTrade := "Export UV [$/1000 head]"]
setnames(country, "measuredItemCPC", "measuredItemFbsSua")
country <- nameData("sua-fbs", "sua_unbalanced", country)
country[, c("timePointYears_description"):= NULL]
country[, Value:= round(Value,0)]
setnames(country, c("measuredItemFbsSua", "measuredItemFbsSua_description"), c("Commodity CPC Code", "Commodity name"))
country[, c("geographicAreaM49"):= NULL]
country <- dcast.data.table(country, geographicAreaM49_description + `Country Group`+ `Commodity CPC Code`+ `Commodity name`+ measuredElementTrade
~ timePointYears, value.var = c("Value", "flagObservationStatus", "flagMethod"))
setnames(country, c( "measuredElementTrade", "geographicAreaM49_description"),c("Trade Dimension","Country"))
yearcols <- grep("^Value", names(country), value = TRUE)
yearcols_new = gsub("^.*?_","", yearcols)
flagcols <- grep("^flagObservationStatus", names(country), value = TRUE)
flagcols_new=gsub("_", " ", flagcols, fixed=TRUE)
methodcols <- grep("^flagMethod", names(country), value = TRUE)
methodcols_new=gsub("_", " ", methodcols, fixed=TRUE)
addorder <- as.vector(rbind(yearcols_new, flagcols_new, methodcols_new))
setnames(country, c(yearcols, flagcols, methodcols), c(yearcols_new, flagcols_new, methodcols_new))
setcolorder(country, c("Country Group", "Country", "Commodity name", "Commodity CPC Code", "Trade Dimension", addorder))
flagcols_new <- grep("^flagObservationStatus", names(country), value = TRUE)
methodcols_new <- grep("^flagMethod", names(country), value = TRUE)
setnames(country, flagcols_new, rep("Status", number_of_year))
setnames(country, methodcols_new, rep("Method", number_of_year))
country[, `Trade Dimension`:= as.character(`Trade Dimension`)]
country <- subset(country, `Trade Dimension` %in% c("Import_Quantity (t)", "Export_Quantity (t)", "Import Value [1000 $]",
"Export Value [1000 $]", "Import UV [$/t]","Export UV [$/t]",
"Import_Quantity [head]", "Export_Quantity [head]","Import_Quantity [1000 head]","Export_Quantity [1000 head]",
"Import UV [$/head]","Export UV [$/head]" ,
"Import UV [$/1000 head]","Export UV [$/1000 head]"))
# Give the last shape of data and produce excel files
message("Excel files producing...")
# timeseriesDataRegion : regional data
# country : country data
# world : world data
world[`Trade Dimension` == "(Import/Export) - 1", `Trade Dimension` := "[(Import/Export) - 1] in %"]
world[`Trade Dimension` == "Import_growth", `Trade Dimension` := "[Import_growth] in %"]
world[`Trade Dimension` == "Export_growth", `Trade Dimension` := "[Export_growth] in % "]
timeseriesDataRegion[`Trade Dimension` == "(Import/Export) - 1", `Trade Dimension` := "[(Import/Export) - 1] in %"]
timeseriesDataRegion[`Trade Dimension` == "Import_growth", `Trade Dimension` := "[Import_growth] in %"]
timeseriesDataRegion[`Trade Dimension` == "Export_growth", `Trade Dimension` := "[Export_growth] in % "]
country[`Trade Dimension` == "(Import/Export) - 1", `Trade Dimension` := "[(Import/Export) - 1] in %"]
country[`Trade Dimension` == "Import_growth", `Trade Dimension` := "[Import_growth] in %"]
country[`Trade Dimension` == "Export_growth", `Trade Dimension` := "[Export_growth] in % "]
foritem_names <- country[,.(`Commodity name`)]
foritem_names[`Commodity name`=='Swine / pigs', `Commodity name`:= 'Swine-pigs']
item_names <- unique(foritem_names$`Commodity name`)
# Create temporary location for the output
TMP_DIR <- file.path(tempdir())
if (!file.exists(TMP_DIR)) dir.create(TMP_DIR, recursive = TRUE)
tmp_file_commoditytables <- file.path(TMP_DIR, paste0("item_", item_names,".xlsx"))
# tmp_file_commoditytables <- file.path('C:/Users/Selek/Desktop/ALL-2021/', paste0("item_", item_names,".xlsx"))
# Item files is being producing
list_of_commodity <- unique(world$`Commodity CPC Code`)
for (i in 1:length(list_of_commodity)){
item_name <- unique(country[, c("Commodity name","Commodity CPC Code"), with = FALSE])
if(list_of_commodity[i] == "02140"){
item_name <- c("Swine_Pigs")
}else{
item_name <- unique(item_name[`Commodity CPC Code` == list_of_commodity[i]]$`Commodity name`)
}
# TMP_DIR <- file.path(tempdir())
# if (!file.exists(TMP_DIR)) dir.create(TMP_DIR, recursive = TRUE)
# tmp_file_commoditytables <- file.path(TMP_DIR, paste0("item_", item_name,".xlsx"))
x1 <- subset(world, `Commodity CPC Code` == list_of_commodity[i])
if (list_of_commodity[i] %in% crops){
z <- c("Import_Quantity (t)","Import Value [1000 $]", "Import UV [$/t]", "Export_Quantity (t)", "Export Value [1000 $]","Export UV [$/t]","Import - Export",
"[(Import/Export) - 1] in %", "[Import_growth] in %", "[Export_growth] in % ", "Status" )
} else if (list_of_commodity[i] %in% big_animals) {
z <- c("Import_Quantity [head]","Import Value [1000 $]", "Import UV [$/head]", "Export_Quantity [head]", "Export Value [1000 $]","Export UV [$/head]","Import - Export",
"[(Import/Export) - 1] in %", "[Import_growth] in %", "[Export_growth] in % ", "Status" )
} else {
z <- c("Import_Quantity [1000 head]","Import Value [1000 $]", "Import UV [$/1000 head]", "Export_Quantity [1000 head]",
"Export Value [1000 $]","Export UV [$/1000 head]","Import - Export",
"[(Import/Export) - 1] in %", "[Import_growth] in %", "[Export_growth] in % ", "Status" )
}
x1 <- x1[order(match(`Trade Dimension`, z)),]
x1_1 <- rbind(x1[1:3,],x1[1:3,][nrow(x1[1:3,]) + 1L])
x1_2 <- rbind(x1[4:6,],x1[4:6,][nrow(x1[4:6,]) + 1L])
x1_3 <- rbind(x1[7:11,],x1[7:11,][nrow(x1[7:11,]) + 1L])
x1 <- rbind(x1_1,x1_2,x1_3)
x1[is.na(x1)] <- ""
numeric_columns <- grep("^[[:digit:]]{4}$", names(x1), value = TRUE)
x1[, (numeric_columns) := lapply(.SD, as.numeric), .SDcols = numeric_columns] # World
# Country details
if (list_of_commodity[i] %in% crops){
z2 <- c("Import_Quantity (t)","Import Value [1000 $]", "Import UV [$/t]", "Export_Quantity (t)", "Export Value [1000 $]","Export UV [$/t]")
} else if (list_of_commodity[i] %in% big_animals) {
z2 <- c("Import_Quantity [head]","Import Value [1000 $]", "Import UV [$/head]", "Export_Quantity [head]", "Export Value [1000 $]","Export UV [$/head]")
} else {
z2 <- c("Import_Quantity [1000 head]","Import Value [1000 $]", "Import UV [$/1000 head]", "Export_Quantity [1000 head]", "Export Value [1000 $]","Export UV [$/1000 head]")
}
x2 <- subset(country, `Commodity CPC Code` == list_of_commodity[i] & `Trade Dimension` %in% z2)
x2 <- x2[order(match(`Trade Dimension`, z2)),]
x2 <- x2[order(Country),]
# Regions
x3 <- subset(timeseriesDataRegion, `Commodity CPC Code` == list_of_commodity[i])
x3 <- x3[order(match(`Trade Dimension`, z)),]
xxx <- list()
for (j in 1:length(unique(x3$`Country Group`))){
xx <- subset(x3, `Country Group` == unique(x3$`Country Group`)[j])
xx <- xx[order(match(`Trade Dimension`, z)),]
xx_1<-rbind(xx[1:3,],xx[1:3,][nrow(xx[1:3,]) + 1L])
xx_2 <-rbind(xx[4:6,],xx[4:6,][nrow(xx[4:6,]) + 1L])
xx_3 <-rbind(xx[7:11,],xx[7:11,][nrow(xx[7:11,]) + 1L])
xx <- rbind(xx_1,xx_2,xx_3)
xx[is.na(xx)] <- ""
numeric_columns <- grep("^[[:digit:]]{4}$", names(xx), value = TRUE)
xx[, (numeric_columns) := lapply(.SD, as.numeric), .SDcols = numeric_columns]
xxx[[j]] <- xx
}
x3 <- rbindlist(xxx) # Regions
wb <- createWorkbook("Creator of workbook")
addWorksheet(wb, sheetName = "World_summary")
addWorksheet(wb, sheetName = "Country_details")
addWorksheet(wb, sheetName = "Regions")
header_st <- createStyle(textDecoration = "Bold")
writeData(wb, "World_summary", x1, headerStyle = header_st)
writeData(wb, "Country_details", x2, headerStyle = header_st)
writeData(wb, "Regions", x3, headerStyle = header_st)
setColWidths(wb, sheet = "World_summary" , cols = 1:ncol(x1), widths = "auto")
setColWidths(wb, sheet = "Country_details" , cols = 1:ncol(x2), widths = "auto")
setColWidths(wb, sheet = "Regions" , cols = 1:ncol(x3), widths = "auto")
style_comma <- createStyle(numFmt = "COMMA")
for (y in 6:length(x1)) {
addStyle(wb, "World_summary", cols = y, rows = 1:nrow(x1)+1, style = style_comma, gridExpand = TRUE, stack = TRUE)
}
for (y in c((6:length(x2)) [6:length(x2)%%3 == 0])) {
addStyle(wb, "Country_details", cols = y, rows = 1:nrow(x2)+1, style = style_comma, gridExpand = TRUE, stack = TRUE)
}
for (y in 6:length(x3)) {
addStyle(wb, "Regions", cols = y, rows = 1:nrow(x3)+1, style = style_comma, gridExpand = TRUE, stack = TRUE)
}
saveWorkbook(wb, tmp_file_commoditytables[i], overwrite = TRUE)
}
tmp_file_world <- file.path(TMP_DIR, paste0(min_year, "_", max_year, "_trade_commodity_tables.xlsx"))
world2 <- world[`Trade Dimension` %!in% c("Import UV [$/t]", "Export UV [$/t]", "Import UV [$/head]",
"Export UV [$/head]", "Import UV [$/1000 head]", "Export UV [$/1000 head]"),]
z <- c(unique(world2$`Trade Dimension`[grepl("Import_Quantity", world2$`Trade Dimension`)]), unique(world2$`Trade Dimension`[grepl("Export_Quantity", world2$`Trade Dimension`)]), "Import - Export", "[(Import/Export) - 1] in %", "[Import_growth] in %",
"[Export_growth] in % ", "Status", "Import Value [1000 $]", "Export Value [1000 $]")
world2 <- world2 %>% slice(order(factor(`Trade Dimension`, levels = z)))
world2 <- world2[order(world2$`Commodity CPC Code`),, drop=FALSE]
N = 1
after_rows = 9
world2<- do.call(rbind, lapply(split(world2, ceiling(1:NROW(world2)/after_rows)),
function(a) rbind(a, replace(a[1:N,], TRUE, ""))))
world2 <- as.data.table(world2)
world2[, Country:= NULL]
year_cols <- c(names(world2)[names(world2) %!in% c("Country Group", "Commodity name", "Commodity CPC Code", "Trade Dimension")])
world2[,(year_cols):= lapply(.SD, as.numeric), .SDcols = year_cols]
wb <- createWorkbook("Creator of workbook2")
addWorksheet(wb, sheetName = "World_trade_tables")
header_st <- createStyle(textDecoration = "Bold", border = c('Top', 'Bottom', 'Left', 'Right'), borderColour = 'black')
style_comma <- createStyle(numFmt = "COMMA")
first_fill <- createStyle(fgFill = "#F34B43")
writeData(wb, 'World_trade_tables', world2, headerStyle = header_st)
setColWidths(wb, sheet = "World_trade_tables" , cols = 1:ncol(world2), widths = "auto")
for (i in 5:ncol(world2)){
addStyle(wb, "World_trade_tables", cols = i, rows = 1 + c(na.omit((1:nrow(world2))[world2[[i]] == 0 & world2$`Trade Dimension` == 'Status'])),
style = first_fill, gridExpand = TRUE, stack = TRUE)
}
for (i in 5:ncol(world2)) {
addStyle(wb, "World_trade_tables", cols = i, rows = 1:nrow(world2), style = style_comma, gridExpand = TRUE, stack = TRUE)
}
saveWorkbook(wb, tmp_file_world, overwrite = TRUE)
# saveWorkbook(wb,file = "C:/Users/aydan/Desktop/world.xlsx", overwrite = TRUE)
# files2zip <- dir("C:/Users/aydan/Desktop/items_nonlivestock/", full.names = TRUE)
# zipped <- zip(zipfile = 'C:/Users/aydan/Desktop/testzip', files = files2zip)
bodyCommodityTables = paste("Plugin completed.")
send_mail(from = "no-reply@fao.org", subject = "Commodity tables", body = c(bodyCommodityTables, tmp_file_commoditytables), remove = TRUE)
# send_mail(from = "no-reply@fao.org", subject = "Commodity tables", body = c(bodyCommodityTables, tmp_file_commoditytables[21:length(tmp_file_commoditytables)]), remove = TRUE)
send_mail(from = "no-reply@fao.org", subject = "World", body = c(bodyCommodityTables, tmp_file_world), remove = TRUE)
print('Plug-in Completed')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.