#' Fit a Cox proportional hazards regression model
#'
#' Fits `coxph` on all survival endpoints. `doCoxphGeneric` fits univariable
#' models for each variable in `var.names`, and `doCoxphMultivariable` fits a
#' multivariable model for all variables together in `var.names`.
#'
#' Please note the following assumptions:
#' * Marker can be binary, continuous or categorical.
#' * Missing survival time/status variables are coded as `NA` (i.e. will only be
#' checked by `is.na()`).
#' * Survival time/status variable name specified in the following order: "os",
#' "dss", "rfs".
#' * Coding of survival status is binary only (i.e. cannot take survival status
#' of > 2 categories).
#'
#' @param input.d The `data.frame` containing the data
#' @param var.names variables to include as predictors
#' @param var.descriptions vector of strings to describe the variables as they
#' are to appear in the table
#' @param show.var.detail logical. If `TRUE`, details such as categories and the
#' reference group for categorical variables are shown.
#' @param show.group.name.for.bin.var logical. If `TRUE`, the non-reference
#' group name is shown beside the hazard ratio for dichotomized variables.
#' @param var.ref.groups a vector of reference groups. If `NULL`, assume all
#' variables are binary/continuous. If an item in the vector is `NA`, assume
#' that particular marker is binary or continuous (i.e., treat it as a numeric
#' variable)
#' @param var.names.surv.time variable names of survival time
#' @param var.names.surv.time2 optional variable names for interval ending
#' times, used when survival is left-truncated. The interpretation of
#' `var.names.surv.time` becomes interval starting times when this argument is
#' not `NULL`.
#' @param var.names.surv.status variable names of survival status
#' @param event.codes.surv event coding of survival status variable
#' @param surv.descriptions names abbreviated survival endpoints in returned
#' output
#' @param var.strata optional variable name to stratify by using
#' [survival::strata()]
#' @param missing.codes character strings of missing values used in `input.d`
#' @param use.firth percentage of censored cases before using Firth's method for
#' Cox regression. If `use.firth = 1` (default), Firth is never used and if
#' `use.firth = -1` Firth is always used.
#' @param firth.caption subscript in html table output indicating Firth was used
#' @param add_log_hr if `TRUE`, show the log hazard ratio
#' @param stat.test the overall model test to perform on the Cox regression
#' model. Can be any of "waldtest", "logtest", or "sctest". If Firth is used,
#' only "logtest" can be performed. Test p-values are never Firth corrected (
#' per instruction from Aline 2015-04-14,15).
#' @param bold_pval logical; if `TRUE`, p-values are bolded if statistically
#' significant at `sig.level`
#' @param sig.level significance level; default 0.05
#' @param round.digits.hr number of digits for hazard ratio
#' @param round.digits.p.value number of digits for p-value
#' @param round.small if `TRUE`, uses small number rounding via [round_small()]
#' for p-values
#' @param scientific if `TRUE`, uses scientific notation when rounding
#' @param caption caption for returned object
#' @param html.table.border the border type to use for html tables
#' @param banded.rows logical. If `TRUE`, rows have alternating shading colour
#' @param css.class.name.odd Used to set the row colour for odd rows
#' @param css.class.name.even Used to set the row colour for even rows
#' @param split.table number of characters per row before splitting the table.
#' Applies to the pandoc table output.
#' @param format Either a "long" or "wide" format for the `result.table.bamboo`
#' result element
#' @param ... additional arguments to [pander::pandoc.table.return()]
#' @return A list with the following elements
#' * `result.table`: a data frame with the Cox model results.
#' * `result.table.bamboo`: results transformed into a pandoc-ready format.
#' Display using `cat()`.
#' * `result.table.html`: results transformed into an HTML-ready format. Display
#' using [htmlTable::htmlTable()].
#' * `cox.stats`: present for `doCoxphMultivariable()` only. A list of
#' additional Cox model output statistics.
#' @name doCoxph
#' @author Samuel Leung, Aline Talhouk, Derek Chiu
#' @export
#' @examples
#' library(survival)
#' doCoxphGeneric(input.d = lung, var.names = "sex", var.descriptions = "Sex",
#' var.names.surv.time = "time",
#' var.names.surv.status = "status", event.codes.surv = "2",
#' surv.descriptions = "OS", caption = "")
doCoxphGeneric <- function(
input.d, var.names, var.descriptions, show.var.detail = FALSE,
show.group.name.for.bin.var = FALSE, var.ref.groups = NULL,
var.names.surv.time = c("os.yrs", "dss.yrs", "rfs.yrs"),
var.names.surv.time2 = NULL,
var.names.surv.status = c("os.sts", "dss.sts", "rfs.sts"),
event.codes.surv = c("os.event", "dss.event", "rfs.event"),
surv.descriptions = c("OS", "DSS", "PFS"),
var.strata = NULL,
missing.codes = c("N/A", "", "Unk"),
use.firth = 1, firth.caption = FIRTH.CAPTION, add_log_hr = FALSE,
stat.test = "waldtest", bold_pval = FALSE, sig.level = 0.05,
round.digits.hr = 2,
round.digits.p.value = 4, round.small = FALSE, scientific = FALSE,
caption = NA, html.table.border = 0, banded.rows = FALSE,
css.class.name.odd = "odd", css.class.name.even = "even",
split.table = 300, format = c("long", "wide"), ...) {
# Constants
kLocalConstantHrSepFlag <- "kLocalConstantHrSepFlag" # separates HR estimates
col.th.style <- COL.TH.STYLE
row.th.style <- ROW.TH.STYLE
# Initial assertion checks
num.surv.endpoints <- length(var.names.surv.time)
assertthat::assert_that(num.surv.endpoints == length(var.names.surv.status),
num.surv.endpoints == length(event.codes.surv),
num.surv.endpoints == length(surv.descriptions))
if (!is.null(var.names.surv.time2)) {
assertthat::assert_that(num.surv.endpoints == length(var.names.surv.time2))
}
# Ensure variable names are not named vectors
var.names <- unname(var.names)
var.names.surv.time <- unname(var.names.surv.time)
var.names.surv.time2 <- unname(var.names.surv.time2)
var.names.surv.status <- unname(var.names.surv.status)
var.strata <- unname(var.strata)
# Remove all variables not used in analysis, ensure survival times are numeric
input.d <- input.d %>%
dplyr::select(dplyr::all_of(c(
var.names,
var.names.surv.time,
var.names.surv.time2,
var.names.surv.status,
var.strata
))) %>%
droplevels() %>%
dplyr::mutate_at(c(var.names.surv.time, var.names.surv.time2), as.numeric)
# Setup default for variable reference groups and result matrix
nvar <- length(var.names)
var.ref.groups <- var.ref.groups %||% rep(NA, nvar)
rn <- paste(rep(var.names, each = num.surv.endpoints), surv.descriptions,
sep = "-")
cn <- c("# of events / n", "Hazard Ratio (95% CI)",
paste0(ifelse(stat.test == "logtest", "LRT ", ""), "P-value"))
if (add_log_hr) {
cn <- append(cn, "Log Hazard Ratio", 1)
}
result.table <- matrix(
NA_character_,
nrow = nvar * num.surv.endpoints,
ncol = length(cn),
dimnames = list(rn, cn)
)
for (i in seq_along(var.names)) {
x <- var.names[i]
temp.d <- input.d %>% # remove any cases with NA's or missing values
dplyr::filter(!is.na(.[[x]]) & !(.[[x]] %in% missing.codes))
# automatically set ref.group to lowest group if not specified
if (is.factor(temp.d[[x]]) & is.na(var.ref.groups[i])) {
var.ref.groups[i] <- names(table(temp.d[[x]]))[1]
}
if (is.na(var.ref.groups[i])) {
temp.d[[x]] <- as.numeric(temp.d[[x]])
} else {
temp.d[[x]] <- stats::relevel(as.factor(temp.d[[x]]), var.ref.groups[i])
}
for (j in seq_len(num.surv.endpoints)) {
surv.formula <- surv_formula(
time = var.names.surv.time[j],
status = var.names.surv.status[j],
event = event.codes.surv[j],
terms = x,
time2 = var.names.surv.time2[j],
strata = var.strata
)
temp.d.no.missing.survival <- temp.d %>%
dplyr::filter(!is.na(.[[var.names.surv.status[[j]]]]),
!is.na(.[[var.names.surv.time[[j]]]]))
cox.stats <- prettyCoxph(surv.formula,
input.d = temp.d.no.missing.survival,
use.firth = use.firth)
e.n <- paste(cox.stats$nevent, "/", cox.stats$n)
hr.ci <- cox.stats$output %>%
magrittr::extract(, c("estimate", "conf.low", "conf.high")) %>%
format_hr_ci(digits = round.digits.hr, labels = FALSE, method = "Sci") %>%
paste0(ifelse(cox.stats$used.firth, firth.caption, "")) %>%
paste(collapse = kLocalConstantHrSepFlag)
pval <- summary(cox.stats$fit)[[stat.test]][["pvalue"]]
pval_f <- pval %>%
round_pval(round.small = round.small,
scientific = scientific,
digits = round.digits.p.value) %>%
ifelse(bold_pval & pval < sig.level, paste0("**", ., "**"), .)
res <- c(e.n, hr.ci, pval_f)
if (add_log_hr) {
log_hr <- cox.stats$output %>%
magrittr::extract(, "estimate") %>%
log() %>%
round(digits = round.digits.hr) %>%
paste0(ifelse(cox.stats$used.firth, firth.caption, "")) %>%
paste(collapse = kLocalConstantHrSepFlag)
res <- append(res, log_hr, 1)
}
result.table[num.surv.endpoints * (i - 1) + j, ] <- res
}
}
### generate html table ... ###
result.table.html <- paste0("<table border=", html.table.border, ">",
ifelse(is.na(caption), "",
paste0("<caption style='",
TABLE.CAPTION.STYLE, "'>", caption,
"</caption>")),
"<tr><th style='", col.th.style,
"' colspan=2></th><th style='", col.th.style,
"'>",
paste(colnames(result.table),
collapse = paste0("</th><th style='",
col.th.style, "'>")),
"</th></tr>")
# print values
i <- 1
while (i <= nrow(result.table)) {
is.first.row <- TRUE
tr.class <- ifelse(banded.rows,
paste0(" class='",
ifelse((floor(i / num.surv.endpoints) + 1) %%
2 == 0, css.class.name.even,
css.class.name.odd), "'"), "")
var.index <- floor((i - 1) / num.surv.endpoints) + 1
var.description <- var.descriptions[var.index]
if (show.var.detail) {
var.categories <- names(table(input.d[, var.names[var.index]]))
var.categories <- var.categories[!var.categories %in% missing.codes]
if (!is.na(var.ref.groups[var.index])) {
# this variable is categorical ... print ref group and categories
var.description <- paste0(var.description, ":<br><br><i>",
paste(var.categories, collapse = "<br>"),
"<br><br>(reference group:", var.ref.groups[var.index], ")</i>")
}
}
result.table.html <- paste0(result.table.html, "<tr", tr.class,
"><th style='", row.th.style, "' rowspan=",
num.surv.endpoints, ">",
var.description, "</th>")
for (surv.description in surv.descriptions) {
result.table.html <- paste0(
result.table.html,
ifelse(is.first.row, "", paste0("<tr", tr.class, ">")),
"<th style='", row.th.style, "'>", surv.description, "</th><td>",
paste(gsub(kLocalConstantHrSepFlag, "<br>", result.table[i, ]), collapse = "</td><td>"), "</td></tr>")
is.first.row <- FALSE # if run any time after the first row, must not be the first row any more
i <- i + 1
}
}
result.table.html <- paste0(result.table.html, "</table>")
### end of generate html table ###
### generate word-friendly table via pander i.e. result.table.bamboo ... ###
result.table.bamboo <- result.table
result.table.ncol <- ncol(result.table)
result.table.bamboo.base.indexes <- c() # base indexes for each variable in result.table.bamboo
# want to add empty rows for var description
for (var.count in seq_along(var.names)) {
result.table.bamboo.base.index <- 1 + (var.count - 1) * (length(surv.descriptions) + 1)
if (var.count == 1) {
result.table.bamboo <- rbind(rep("", result.table.ncol), result.table.bamboo)
} else {
result.table.bamboo <- rbind(
result.table.bamboo[1:(result.table.bamboo.base.index - 1), ],
rep("", result.table.ncol),
result.table.bamboo[result.table.bamboo.base.index:nrow(result.table.bamboo), ])
}
rownames(result.table.bamboo)[result.table.bamboo.base.index] <- paste0("**", var.descriptions[var.count],
ifelse(show.var.detail,
paste0(" (reference group:", var.ref.groups[var.count], ")"),
""), "**")
rownames(result.table.bamboo)[result.table.bamboo.base.index + c(1:length(surv.descriptions))] <- surv.descriptions
result.table.bamboo.base.indexes <- c(result.table.bamboo.base.indexes, result.table.bamboo.base.index)
}
# want to add a column to describe different factor level for categorical
# whenever reference group is specified
if (sum(is.na(var.ref.groups)) != length(var.ref.groups)) {
first.col.name <- colnames(result.table.bamboo)[1]
result.table.bamboo <- cbind(result.table.bamboo[, 1], "",
result.table.bamboo[, -1])
colnames(result.table.bamboo)[1] <- first.col.name
# column with the hazard ratios
if (add_log_hr) hr.col.index <- 3:4 else hr.col.index <- 3
for (var.count in seq_along(var.names)) {
if (!is.na(var.ref.groups[var.count])) {
ref.group <- var.ref.groups[var.count]
other.groups <- names(table(input.d[, var.names[var.count]]))
other.groups <- other.groups[other.groups != ref.group & !(other.groups %in% missing.codes)]
num.other.groups <- length(other.groups)
result.table.bamboo.base.index <- result.table.bamboo.base.indexes[var.count]
# for each survival end points e.g. os, dss, rfs
for (i in seq_len(num.surv.endpoints)) {
curr.base.index <- result.table.bamboo.base.index + (i - 1) * num.other.groups + 1
if (num.other.groups > 1) {
for (j in 1:(num.other.groups - 1)) {
if (curr.base.index < nrow(result.table.bamboo)) {
last.row.name <- rownames(result.table.bamboo)[nrow(result.table.bamboo)]
result.table.bamboo <- rbind(
result.table.bamboo[1:curr.base.index, ],
rep("", ncol(result.table.bamboo)),
result.table.bamboo[(curr.base.index + 1):nrow(result.table.bamboo), ])
rownames(result.table.bamboo)[nrow(result.table.bamboo)] <- last.row.name
} else {
result.table.bamboo <- rbind(
result.table.bamboo,
rep("", ncol(result.table.bamboo))
)
}
}
}
if (num.other.groups > 1 | show.group.name.for.bin.var) {
base_rows <- curr.base.index:(curr.base.index + num.other.groups - 1)
result.table.bamboo[base_rows, hr.col.index] <-
stringr::str_split_fixed(
string = result.table.bamboo[curr.base.index, hr.col.index],
pattern = kLocalConstantHrSepFlag,
n = num.other.groups) %>%
t()
result.table.bamboo[base_rows, 2] <- other.groups
}
}
# need to update result.table.bamboo.base.indexes since we've added rows!!!
if (var.count < nvar) {
result.table.bamboo.base.indexes[(var.count + 1):nvar] <- result.table.bamboo.base.indexes[(var.count + 1):nvar] +
(num.other.groups - 1) * num.surv.endpoints
}
}
}
# if the column of hazard ratio category ends up being empty, remove it
if (sum(result.table.bamboo[, hr.col.index - 1] == "") == nrow(result.table.bamboo)) {
hr.col.index <- hr.col.index - 1
result.table.bamboo <- result.table.bamboo[, -hr.col.index]
}
}
# Reformat if "wide" format chosen
format <- match.arg(format)
if (format == "wide") {
group_sizes <- diff(c(result.table.bamboo.base.indexes, nrow(result.table.bamboo) + 1))
splits <- purrr::map2(result.table.bamboo.base.indexes, group_sizes, ~ seq(from = .x, length.out = .y))
tab_splits <- purrr::map(splits, ~ result.table.bamboo[., ])
result.table.bamboo <- purrr::map_dfr(tab_splits, ~ {
data.frame(outcome = rownames(.x), .x, check.names = FALSE) %>%
dplyr::rename_if(names(.) == "V2", ~ "Levels") %>%
dplyr::mutate(Variable = .[["outcome"]][1]) %>%
dplyr::relocate(Variable, .before = 1) %>%
utils::tail(-1) %>%
dplyr::mutate(across("outcome", ~ ifelse(. == "", NA, .))) %>%
tidyr::fill(outcome) %>%
tidyr::pivot_longer(
cols = c("# of events / n", "Hazard Ratio (95% CI)", matches("P-value")),
names_to = "stat",
values_to = "values"
) %>%
tidyr::unite(outcome.stat, c("outcome", "stat"), sep = ": ") %>%
tidyr::pivot_wider(names_from = "outcome.stat", values_from = "values") %>%
dplyr::mutate(Variable = ifelse(duplicated(.data$Variable), "", .data$Variable))
}) %>%
rlang::set_names(gsub(".*:.*(Hazard|P-value)", "\\1", names(.))) %>%
as.matrix()
}
# subscript ("<sup>|</sup>") and line break ("<br>") syntax for pandoc
options("table_counter" = options()$table_counter - 1)
result.table.bamboo <- result.table.bamboo %>%
gsub(pattern = "<sup>|</sup>", replacement = "^", .) %>%
pander::pandoc.table.return(., caption = caption,
emphasize.rownames = FALSE,
split.table = split.table, ...) %>%
gsub(pattern = kLocalConstantHrSepFlag, replacement = "; ", .) %>%
gsub(pattern = "<br>", replacement = "\\\\\n", .)
### end of result.table.bamboo ###
### clean result.table ###
result.table <- gsub(kLocalConstantHrSepFlag, ", ", result.table)
### end of clean result.table ###
dplyr::lst(result.table, result.table.bamboo, result.table.html)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.