EmulatedMatrix <- R6::R6Class(
"EmulatorMatrix",
public = list(
mat = NULL,
theta_t = NULL,
rho = NULL,
logmatrix = FALSE,
initialize = function(em_mat, thet, rho_mat, logged) {
self$mat <- em_mat
self$theta_t <- thet
self$rho <- rho_mat
self$logmatrix <- logged
},
get_matrix = function() return(self$mat),
get_exp = function(x, check_positive = TRUE) {
t_out <- array(t(sapply(seq_along(self$mat), function(i) {
if (!inherits(self$mat[[i]], "Emulator")) output <- rep(NA, nrow(x))
else if (self$mat[[i]]$output_name == "zero_emulator") {
if (self$logmatrix) output <- rep(-Inf, nrow(x))
output <- rep(0, nrow(x))
}
else if (check_positive && !self$logmatrix) output <- self$mat[[i]]$get_exp(x, check_neg = FALSE)
else output <- self$mat[[i]]$get_exp(x)
})), c(dim(self$mat), nrow(x)))
t_out[is.na(t_out)] <- 0
for (i in 1:nrow(x)) {
t_out[,,i] <- t_out[,,i] + t(t_out[,,i]) - diag(diag(t_out[,,i]))
}
if (check_positive && !self$logmatrix) {
t_out <- array(apply(t_out, 3, function(mat) {
es <- eigen(mat)
eve <- es$vectors
eva <- es$values
eva[eva < 0] <- 0
eve %*% diag(eva) %*% t(eve)
}), dim = c(dim(self$mat), nrow(x)))
}
if (self$logmatrix) {
t_out <- array(apply(t_out, 3, function(mat) {
es <- eigen(mat)
eve <- es$vectors
eva <- es$values
eva <- exp(eva)
eve %*% diag(eva) %*% t(eve)
}), dim = c(dim(self$mat), nrow(x)))
}
return(t_out)
},
get_cov = function(x, check_positive = TRUE) {
t_out <- array(t(sapply(seq_along(self$mat), function(i) {
if (!inherits(self$mat[[i]], "Emulator")) output <- rep(NA, nrow(x))
else if (self$mat[[i]]$output_name == "zero_emulator") {
output <- rep(0, nrow(x))
}
else if (check_positive) output <- self$mat[[i]]$get_cov(x, check_neg = FALSE)
else output <- self$mat[[i]]$get_cov(x)
})), c(dim(self$mat), nrow(x)))
t_out[is.na(t_out)] <- 0
for (i in 1:nrow(x)) {
t_out[,,i] <- t_out[,,i] + t(t_out[,,i]) - diag(diag(t_out[,,i]))
}
if (check_positive) {
t_out <- array(apply(t_out, 3, function(mat) {
es <- eigen(mat)
eve <- es$vectors
eva <- es$values
eva[eva < 0] <- 0
eve %*% diag(eva) %*% t(eve)
}), dim = c(dim(self$mat), nrow(x)))
}
return(t_out)
},
get_uncertainty = function(x, mean_ems, check_positive = TRUE) {
prior_uncert <- self$get_exp(x, check_positive)
cor_mat <- array(apply(prior_uncert, 3, cov2cor), dim = c(dim(self$mat), nrow(x)))
e_mat <- matrix(nrow = length(mean_ems), ncol = length(mean_ems))
e_mat[row(e_mat) == col(e_mat)] <- mean_ems
e_mat <- matrix(e_mat, nrow = length(mean_ems), ncol = length(mean_ems))
cov_out <- array(t(sapply(seq_along(e_mat), function(i) {
if (is.logical(e_mat[[i]])) return(rep(0, nrow(x)))
return(as.numeric(e_mat[[i]]$get_cov(x)))
})), dim = c(dim(e_mat), nrow(x)))
return(array(sapply(seq_len(nrow(x)), function(i) {
sqrt(cov_out[,,i]) %*% cor_mat[,,i] %*% sqrt(cov_out[,,i])
}), dim = c(dim(e_mat), nrow(x))))
},
print = function(...) {
prior_var_matrix <- matrix(sapply(self$mat, function(x) {
if (!inherits(x, "Emulator")) return(0)
if (x$output_name == "zero_emulator") return(0)
return(x$u_sigma^2)
}), nrow = nrow(self$mat))
rownames(prior_var_matrix) <- colnames(prior_var_matrix) <- map_chr(diag(self$mat), ~.$output_name)
prior_var_matrix <- prior_var_matrix + t(prior_var_matrix) - diag(diag(prior_var_matrix))
cat("Emulated covariance matrix\n")
cat(paste0("Outputs: ", paste0(rownames(prior_var_matrix), collapse = ", "), "\n"))
cat("Prior uncertainty:\n")
print(prior_var_matrix)
cat("Between-output prior structure:\n")
cat(paste("theta_t:", round(self$theta_t, 3), "\n"))
cat("Correlation matrix rho:\n")
print(round(self$rho, 3))
if (self$logmatrix) cat("(Log-covariance emulators)")
invisible(self)
}
)
)
partition_by_output <- function(data, out_names, by_time = TRUE, return_label = FALSE) {
input_names <- names(data)[!names(data) %in% out_names]
out_times <- as.numeric(sub(".*[^\\d](\\d+)$", "\\1", out_names, perl = TRUE))
out_labels <- sub("(.*[^\\d])\\d+$", "\\1", out_names, perl = TRUE)
if (by_time) {
unique_times <- unique(out_times)
if (return_label)
partitioned <- map(unique_times, function(tm) {
out_names[which(out_times == tm)]
})
else
partitioned <- map(unique_times, function(tm) {
data[, c(input_names, out_names[which(out_times == tm)])]
})
}
else {
unique_labels <- unique(out_labels)
if (return_label)
partitioned <- map(unique_labels, function(lb) {
out_names[which(out_labels == lb)]
})
else
partitioned <- map(unique_labels, function(lb) {
data[, c(input_names, out_names[which(out_labels == lb)])]
})
}
return(partitioned)
}
#' Estimate rho matrix
#'
#' @importFrom stats var
#' @importFrom dplyr group_by across all_of group_rows
#'
#' @keywords internal
#' @noRd
get_mpc_rho_est <- function(data, out_names, ...) {
part_data <- partition_by_output(data, out_names, ...)
part_covs <- map(part_data, function(dat) {
g_by_point <- dat |> group_by(across(all_of(names(data)[!names(data) %in% out_names])))
vars <- do.call('rbind.data.frame', map(group_rows(g_by_point), function(gp) {
apply(g_by_point[gp,names(dat) %in% out_names], 2, var)
}))
vars <- setNames(vars, names(dat)[names(dat) %in% out_names])
return(cor(vars))
})
rho_mat_lengths <- unique(map_dbl(part_covs, nrow))
rho_mat_subset <- map(seq_len(max(rho_mat_lengths)), function(l) {
part_covs[map_lgl(part_covs, ~nrow(.) == l)]
})
rho_mat_subset <- rho_mat_subset[map_lgl(rho_mat_subset, ~length(.) > 0)]
rho_mat <- map(rho_mat_subset, ~Reduce("+", .)/length(.))
out_mat <- rho_mat[[1]]
if (length(rho_mat) > 1) {
for (i in 2:length(rho_mat)) {
out_mat <- rbind(cbind(out_mat, matrix(0, nrow = nrow(out_mat), ncol = ncol(rho_mat[[i]]))),
cbind(matrix(0, nrow = nrow(rho_mat[[i]]), ncol = ncol(out_mat)), rho_mat[[i]]))
}
}
rownames(out_mat) <- colnames(out_mat) <- unique(sub("(.*[^\\d])\\d+$", "\\1", out_names, perl = TRUE))
return(out_mat)
}
# Estimate theta-time value
get_mpc_theta_est <- function(data, out_names, ems, rho = NULL) {
if (is.null(rho)) rho <- get_mpc_rho_est(data, out_names)
part_indices <- partition_by_output(data, out_names, FALSE, TRUE)
g_by_point <- data |> group_by(across(all_of(names(data)[!names(data) %in% out_names])))
vars <- do.call('rbind.data.frame', map(group_rows(g_by_point), function(gp) {
apply(g_by_point[gp,names(data) %in% out_names], 2, var)
})) |> setNames(names(data)[names(data) %in% out_names])
all_covs <- cov(vars)
all_cors <- cor(vars)
unique_inputs <- unique(data[,names(data)[!names(data) %in% out_names]])
em_preds <- sqrt(do.call('cbind.data.frame', map(ems, ~.$get_cov(unique_inputs))) |>
setNames(map_chr(ems, "output_name")))
all_vals <- do.call('c', map(seq_len(nrow(em_preds)), function(k) {
theta_ests <- c()
for (i in 1:(ncol(all_cors)-1)) {
for (j in (i+1):ncol(all_cors)) {
nm1 <- out_names[i]
nm2 <- out_names[j]
group1 <- which(map_lgl(part_indices, ~nm1 %in% .))
group2 <- which(map_lgl(part_indices, ~nm2 %in% .))
times <- as.numeric(sub(".*[^\\d](\\d+)$", "\\1", c(nm1, nm2), perl = TRUE))
rho_val <- rho[group1, group2]
theta_ests <- suppressWarnings(c(theta_ests, sqrt(-diff(times)^2/log(all_cors[i,j]/(rho_val*em_preds[k,i]*em_preds[k,j])))))
}
}
return(theta_ests)
}))
all_vals <- all_vals[!is.na(c(all_vals)) & !is.nan(c(all_vals))]
return(mean(all_vals))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.