R/pvals.R

Defines functions pvals

Documented in pvals

#' Computes p-values
#' 
#' Returns p-values for each region reflecting the probability of observing the
#'  mean test-statistic 
#' of the between group comparisons among the inter-replicate comparisons.
#' 
#' @param rrbs An rrbs object containing methylation and coverage data as
#'  created using the BiSeq pacakge
#' @param CpGs A GRanges object with each row being a testing region
#' @param MMD A matrix containing the M3D test-statistic, the difference the
#'  full and methylation blind metrics,
#' for each region in the CpGs object. Each column is a comparison between two
#'  samples, which are described in the column names.
#' @param group1 The name of the first group for the comparison. This is stored
#'  in colData(rrbs)
#' @param group2 The name of the second group for the comparison. This is stored
#'  in colData(rrbs)
#' @param smaller Determines whether the p-value is computed whether the
#'  test-statistic is greater or lesser than inter-replicate 
#' values. For our purposes, it should be set to FALSE.
#' @param comparison Details which groups we are using to define our empirical
#'  testing distribution. The default is to 
#' use all of them, however, should the user find one group contains unusually
#'  high variability, then that group can be selected. 
#' Values are either 'allReps', 'Group1' or 'Group2'. 
#' @param method Determines which method is used to calculate p-values. 
#' 'empirical' uses the empirical distribution directly, without modelling. 
#'  This is the default. 'model', fits an exponential distribution to the tail 
#'  of our null distribution. 
#' @param closePara Sets a threshold for how close the exponential curve should
#' fit the empirical distribution in the 'model' method. If the method produces
#' errors, consider raising this parameter.
#' @return Returns a list P, with 2 entries. 'FDRmean' is the Benjamini-Hochberg
#'  adjusted p-values. The unadjusted p-values are stored in 'Pmean'.
#' @author Tom Mayo \email{[email protected]@ed.ac.uk}
#' @export
#' @import BiSeq
#' @import GenomicRanges
#' @import IRanges
#' @examples
#' \donttest{data(rrbsDemo)
#' data(CpGsDemo)
#' data(MMDlistDemo)
#' M3Dstat <- MMDlistDemo$Full-MMDlistDemo$Coverage
#' group1 <- unique(colData(rrbsDemo)$group)[1]
#' group2 <-unique(colData(rrbsDemo)$group)[2]
#' PDemo <- pvals(rrbsDemo, CpGsDemo, M3Dstat,
#'             group1, group2, smaller=FALSE,comparison='allReps')}


pvals <- function(rrbs, CpGs, MMD, group1, group2, 
                  smaller=FALSE,comparison='allReps',method='empirical',closePara=0.005){
  # get the names of the columns to compare from MMD object
  samples1 <- rownames(colData(rrbs))[colData(rrbs)[,]==group1]
  samples2 <- rownames(colData(rrbs))[colData(rrbs)[,]==group2]
  within1 <- determineGroupComps(samples1,type='within')
  within2 <- determineGroupComps(samples2,type='within')
  within <- c(within1,within2)
  between <- determineGroupComps(samples1,samples2,type='between')
  
  ids1 <- findComps(MMD,within1)
  ids2 <- findComps(MMD,within2)
  ids3 <- findComps(MMD,between)
  
  # get the MMD in order of between groups, then within groups
  Within <- cbind(MMD[,within1],MMD[,within2])
  colnames(Within) <- c(within1,within2)
  Between <- MMD[,between]
  AvsB <- cbind(Between,Within)
  
  # find the total counts over each island, per sample
  nCpGs <- length(CpGs)
  ovlaps <- findOverlaps(CpGs,rowRanges(rrbs))
  islandList <- unique(queryHits(ovlaps))
  nIslands <- length(islandList)
  
  if (method=='model' | method=='model-con'){
    # fit an exponential to the tail of the curve, using the 95th percentile
    wndSze <- 0.01
    cutoff <- quantile(Within,0.95,na.rm=TRUE)
    cutoff <- floor(cutoff/wndSze)*wndSze
    # create a sliding window and count the occurences in the bins
    top <- ceiling(max(Within,na.rm=TRUE)/wndSze)*wndSze
    base <- seq(cutoff, top, wndSze)
    tot <- length(Within[!is.na(Within)])
    cdf <- unlist(lapply(base,function(i) {
      sum(Within<=i,na.rm=TRUE)/tot
    }))
    inds <- cdf!=1 # remove the log(0) terms
    cdf <- cdf[inds]
    base <- base[inds]
    
    # lambda method - search over lambdas, choose the 
    # closest without underestimating the probabilities 
    # (assume lambda between 1 and 150)

    lambdaTests <- seq(1,150,0.1)
    fit <- rep(NaN,length(lambdaTests))
    pass <- rep(TRUE,length(lambdaTests))
    countClose <- rep(TRUE,length(lambdaTests))
    for (i in 1:length(lambdaTests)){
      # sum squared fit
      l<- lambdaTests[i]
      fvect <- exp(-l*base)-1+cdf
      if (any(fvect<0)){
        pass[i] <- FALSE
      }
      countClose[i] <- sum(abs(fvect)>closePara)
#       fit[i] <- sum(fvect*fvect)
      fit[i] <- abs(prod(fvect))
    }
    close <- which(countClose-min(countClose)<=2)
    passes <- which(pass==TRUE)
    fit <- fit[close]
    passes <- passes[close]
    lambdaTests <- lambdaTests[close]
    ind <- which(fit==min(fit,na.rm=TRUE))
    lambda <- lambdaTests[ind]  
    cat('lambda = ',lambda)
    
    # get the pvalues (under the exponential distribution with lambda)
    # use the mean of the inter-group M3D stats
    Pmean <- lapply(1:length(CpGs), function(i) {
      testStat <- mean(Between[i,], na.rm=TRUE)
      if (testStat <= 0) {
        testStat <- 0
      }
      exp(-lambda* testStat)
    })
  } else if (method=='empirical'){
    # use the empirical distribution of the test-statistic as null distribution
    Pmean <- lapply(1:nIslands, function(j) {
      if (smaller==TRUE){
        if (comparison=='Group1'){
          length(which(MMD[,within1] <= mean(
            Between[j,],na.rm=TRUE))) / length(MMD[,within1])
        } else if (comparison=='Group2')  {
          length(which(MMD[,within2] <= mean(
            Between[j,],na.rm=TRUE)))/length(MMD[,within2])      
        } else {
          length(which(Within <= mean(
            Between[j,],na.rm=TRUE)))/length(Within)
        }
        
      } else {
        
        if (comparison=='Group1'){
          length(which(MMD[,within1] >= mean(
            Between[j,],na.rm=TRUE)))/length(MMD[,within1])
        } else if (comparison=='Group2')  {
          length(which(MMD[,within2] >= mean(
            Between[j,],na.rm=TRUE)))/length(MMD[,within2])     
        } else {
          length(which(Within >= mean(
            Between[j,],na.rm=TRUE)))/length(Within)
        }
      }
    })
  }
  Pmean <- unlist(Pmean)
  FDRmean <- p.adjust(as.vector(Pmean),method='BH')
  P <- list(Pmean,FDRmean)
  names(P) <- c('Pmean','FDRmean')
  return(P)
}
TomMayo/M3Ddevel documentation built on May 10, 2017, 5:42 p.m.