WGCNA_GeneModuleTraitCoorelation: Genes correlated with both traits an modules.

Description Usage Arguments Examples

View source: R/WGCNA.R

Description

Genes correlated with both traits an modules.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
WGCNA_GeneModuleTraitCoorelation(
  datExpr,
  MEs_col,
  geneTraitCor,
  traitData,
  net,
  corType = "bicor",
  prefix = "ehbio",
  ...
)

Arguments

datExpr

Expression data. A matrix (preferred) or data frame in which columns are genes and rows ar samples. NAs are allowed, but not too many. See checkMissingData below and details.

MEs_col

Module epigenes generated in WGCNA_saveModuleAndMe.

geneTraitCor

A dataframe generated by WGCNA_ModuleGeneTraitHeatmap

traitData

Sample attributes data frame. Or the "traitData" generated in WGCNA_readindata.

net

WGCNA_coexprNetwork or blockwiseModules returned WGCNA object.

corType

character string specifying the correlation to be used. Allowed values are (unique abbreviations of) "pearson" and "bicor", corresponding to Pearson and bidweight midcorrelation, respectively. Missing values are handled using the pairwise.complete.obs option.

prefix

prefix for output files.

...

Additional parameters given to plot output (pdf, png,...) like "width", "height", .etc.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
df = generateAbundanceDF(nSample=30, nGrp=3, sd=5)
datExpr <- WGCNA_dataFilter(df)
datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr)
power <- WGCNA_softpower(datExpr)
net <- WGCNA_coexprNetwork(datExpr, power)
WGCNA_saveModuleAndMe(net, datExpr)
cyt <- WGCNA_cytoscape(net, power, datExpr)
hubgene <- WGCNA_hubgene(cyt)

#2
exprMat <- "test.file"
wgcnaL <- WGCNA_readindata(exprMat)

traitData <- 'trait.file'
wgcnaL <- WGCNA_readindata(exprMat, traitData)
datExpr <- wgcnaL$datExpr
traitData <- wgcnaL$traitData
WGCNA_dataCheck(datExpr)
datExpr <- WGCNA_dataFilter(datExpr)
datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr)
# datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr, traitColors=wgcnaL$traitColors)
power <- WGCNA_softpower(datExpr)
net <- WGCNA_coexprNetwork(datExpr, power)
MEs_col <- WGCNA_saveModuleAndMe(net, datExpr)
WGCNA_MEs_traitCorrelationHeatmap(MEs_col, traitData=traitData)
cyt <- WGCNA_cytoscape(net, power, datExpr)
hubgene <- WGCNA_hubgene(cyt)
WGCNA_moduleTraitPlot(MEs_col, traitData=traitData)
geneTraitCor <- WGCNA_ModuleGeneTraitHeatmap(datExpr, traitData, net)
WGCNA_GeneModuleTraitCoorelation(datExpr, MEs_col, geneTraitCor, traitData, net)

Tong-Chen/YSX documentation built on Jan. 25, 2021, 2:49 a.m.