dataScaling: dataScaling

Description Usage Arguments

View source: R/PreProcess.R

Description

data scaling for both RNA and ADT (for later Heatmap viosualization)

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
dataScaling(
  object = NULL,
  features = NULL,
  assay = NULL,
  vars.to.regress = NULL,
  model.use = "linear",
  use.umi = FALSE,
  do.scale = TRUE,
  do.center = TRUE,
  scale.max = 10,
  block.size = 1000,
  min.cells.to.block = 3000,
  verbose = TRUE
)

Arguments

object

= NULL, A Seurat object

features

= NULL, features on data scaling

assay

= NULL, assay name, RNA, ADT, HTO

vars.to.regress

= NULL, vars.to.regress, same as Seurat, Variables to regress out (previously latent.vars in RegressOut). For example, nUMI, or percent.mito.

model.use

= "linear", same as Seurat, Use a linear model or generalized linear model (poisson, negative binomial) for the regression. Options are 'linear' (default), 'poisson', and 'negbinom'

use.umi

= FALSE, same as Seurat, Regress on UMI count data. Default is FALSE for linear modeling, but automatically set to TRUE if model.use is 'negbinom' or 'poisson'

do.scale

= TRUE, same as Seurat, Whether to scale the data.

do.center

= TRUE, same as Seurat, Whether to center the data.

scale.max

= 10, same as Seurat, Max value to return for scaled data. The default is 10. Setting this can help reduce the effects of feautres that are only expressed in a very small number of cells.

block.size

= 1000, same as Seurat, Default size for number of feautres to scale at in a single computation. Increasing block.size may speed up calculations but at an additional memory cost.

min.cells.to.block

= 3000, same as Seurat, If object contains fewer than this number of cells, don't block for scaling calculations.

verbose

= TRUE, same as Seurat, Displays a progress bar for scaling procedure


WilsonImmunologyLab/LinQView documentation built on Jan. 3, 2022, 10 p.m.