clusteringFromDistance: clusteringFromDistance

Description Usage Arguments

View source: R/JointAnalysis.R

Description

Run clustering method (implemented by Seurat package) to identify cell populations using cell-cell pairwise distances

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
clusteringFromDistance(
  object,
  assay = "All",
  resolution = c(0.6, 0.6, 0.6),
  graph.k.param = 20,
  graph.compute.SNN = TRUE,
  graph.prune.SNN = 1/15,
  graph.nn.eps = 0,
  graph.force.recalc = FALSE,
  cluster.modularity.fxn = 1,
  cluster.initial.membership = NULL,
  cluster.node.sizes = NULL,
  cluster.algorithm = 1,
  cluster.n.start = 10,
  cluster.n.iter = 10,
  cluster.random.seed = 0,
  cluster.group.singletons = TRUE,
  cluster.temp.file.location = NULL,
  cluster.edge.file.name = NULL
)

Arguments

object

Seurat object

assay

run UMAP for which assay, choose from RNA, ADT, Joint or All

resolution

resolution for 1) Joint, 2) RNA and 3) ADT clustering. if assay = All, user should provide all three solutions. otherwise user only need to provide one resolution for selected assay.

graph.k.param

parameter for Seurat function FindNeighbors. Defines k for the k-nearest neighbor algorithm

graph.compute.SNN

parameter for Seurat function FindNeighbors. also compute the shared nearest neighbor graph

graph.prune.SNN

parameter for Seurat function FindNeighbors. Sets the cutoff for acceptable Jaccard index when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the strigency of pruning (0 — no pruning, 1 — prune everything).

graph.nn.eps

parameter for Seurat function FindNeighbors. Error bound when performing nearest neighbor seach using RANN; default of 0.0 implies exact nearest neighbor search

graph.force.recalc

parameter for Seurat function FindNeighbors. Force recalculation of SNN.

cluster.modularity.fxn

parameter for Seurat function FindClusters.Modularity function (1 = standard; 2 = alternative).

cluster.initial.membership

parameter for Seurat function FindClusters.Parameters to pass to the Python leidenalg function.

cluster.node.sizes

parameter for Seurat function FindClusters.Parameters to pass to the Python leidenalg function.

cluster.algorithm

parameter for Seurat function FindClusters.Algorithm for modularity optimization (1 = original Louvain algorithm; 2 = Louvain algorithm with multilevel refinement; 3 = SLM algorithm; 4 = Leiden algorithm). Leiden requires the leidenalg python.

cluster.n.start

parameter for Seurat function FindClusters.Number of random starts.

cluster.n.iter

parameter for Seurat function FindClusters.Maximal number of iterations per random start.

cluster.random.seed

parameter for Seurat function FindClusters.Seed of the random number generator.

cluster.group.singletons

parameter for Seurat function FindClusters.Group singletons into nearest cluster. If FALSE, assign all singletons to a "singleton" group

cluster.temp.file.location

parameter for Seurat function FindClusters.Directory where intermediate files will be written. Specify the ABSOLUTE path.

cluster.edge.file.name

parameter for Seurat function FindClusters.Edge file to use as input for modularity optimizer jar.


WilsonImmunologyLab/LinQView documentation built on Jan. 3, 2022, 10 p.m.