R/isop.dich.R

Defines functions calc.prob.from.freq.dich isop.dich

Documented in isop.dich

## File Name: isop.dich.R
## File Version: 3.17
######################################################################
# Fitting the ISOP and ADISOP model
isop.dich <- function( dat, score.breaks=NULL, merge.extreme=TRUE,
            conv=.0001, maxit=1000, epsilon=.025,
            progress=TRUE ){
    #*****************************************
    # convert matrix into matrix format
    dat <- as.matrix(dat)
    I <- ncol(dat)
    # define response matrix
    dat.resp <- 1-is.na( dat )
    if( max( dat, na.rm=TRUE ) > 1 ){
        stop("Use isop.poly for polytomous data!")
                    }
    if ( ! is.null(score.breaks) ){
        merge.extreme <- FALSE }
    # different scores of students
    stud.p <- rowMeans( dat, na.rm=TRUE )
    if (merge.extreme){
        score.breaks <- ( c(0,2:(I-1), I+1 ) -.5 ) / I
                      }
    if ( ! is.null( score.breaks) ){
        stud.p <- cut( stud.p, breaks=score.breaks, labels=FALSE)
                        }
    # different items
    item.p <- colMeans( dat, na.rm=TRUE )
    item.ps <- sort( item.p, index.return=TRUE)
    dat <- dat[,  item.ps$ix ]
    # score groups students
    scores <- sort( unique( stud.p ) )
    SC <- length(scores)
    # scoring of students
    res <- isop.scoring( dat )
    person <- res$person
    person$scoregroup <- stud.p
    item <- res$item
    p.itemcat <- res$p.itemcat
    score.itemcat <- res$score.itemcat
    # create item groups
    # create table
    freq.correct <- matrix( NA, SC, I )
    rownames(freq.correct) <- paste0("score_", scores )
    colnames(freq.correct) <- colnames(dat)
    wgt <- freq.correct
    # percent correct
    a1 <- stats::aggregate( dat==1, list( stud.p ), mean, na.rm=TRUE )
    freq.correct <- a1[,-1]
    # weights
    a1 <- stats::aggregate( dat.resp, list( stud.p ), sum, na.rm=TRUE )
    wgt <- a1[,-1]
    # ISOP Model
    res.isop <- fit.isop( freq.correct, wgt, conv=conv,
            maxit=maxit, progress=progress )
    f1 <- freq.correct
    f1 <- res.isop$fX
    # ADISOP Model (start with the fitted isop solution)
    res.adisop <- fit.adisop( freq.correct=f1, wgt, conv=conv, maxit=maxit,
            epsilon=epsilon, progress=progress  )
    wgt1 <- ( wgt / colSums( wgt ) ) / ncol(wgt)
    res.adisop$fit <- sqrt( sum( (  freq.correct - res.adisop$fX  )^2 * wgt1  ) )
    # logistic function
    res.logistic <- fit.logistic( freq.correct, wgt,
                        scores=scores / max( scores), item.p=item.ps$x,
                        conv, maxit, progress=progress )
    # fit generalized logistic function
#    res.genlogistic <- fit.genlogistic( freq.correct, wgt, scores=scores / max( scores), item.p=item.ps$x,
#                        conv, maxit, progress=progress )
    # fit alpha1 parameter
    #*******
    # collect likelihood values
    ll <- data.frame( "model"=c("saturated", "isop", "adisop", "logistic"),
       "ll"=c(res.isop$ll$ll.ind, res.isop$ll$ll.isop,
                res.adisop$ll$ll.adisop, res.logistic$ll$ll.logistic ) )
    ll$llcase <- c( res.isop$ll$llcase.ind, res.isop$ll$llcase.isop,
                      res.adisop$ll$llcase.adisop,
                      res.logistic$ll$llcase.logistic  )
    #*****
    # model fit
    fit <- c( res.isop$fit, res.adisop$fit, res.logistic$fit )
    names(fit) <- c("isop","adisop","logistic")
    # probability tables
    prob.isop <- calc.prob.from.freq.dich( fittedfreq=res.isop$fX )
    prob.adisop <- calc.prob.from.freq.dich( fittedfreq=res.adisop$fX )
    prob.logistic <- calc.prob.from.freq.dich( fittedfreq=res.logistic$fX )
    prob.saturated <- calc.prob.from.freq.dich( fittedfreq=freq.correct )

    #*******
    #* collect results
    res <- list( "freq.correct"=freq.correct, "wgt"=wgt,
              "prob.saturated"=prob.saturated,
              "prob.isop"=prob.isop, "prob.adisop"=prob.adisop,
              "prob.logistic"=prob.logistic,
              "ll"=ll, "fit"=fit,
              "person"=person, "item"=item,
              "p.itemcat"=p.itemcat, "score.itemcat"=score.itemcat,
              "fit.isop"=res.isop, "fit.adisop"=res.adisop,
              "fit.logistic"=res.logistic, "s2"=Sys.time(), "dat"=dat,
              "model"="isop.dich")
    class(res) <- "isop"
    return(res)
        }
##########################################################
# calculate probability table from fitted frequencies
calc.prob.from.freq.dich <- function( fittedfreq ){
         SC <- nrow(fittedfreq)
         I <- ncol(fittedfreq)
         prob1 <- array( NA, dim=c(I,2,SC ) )
         prob1[,2,] <- t(fittedfreq)
         prob1[,1,] <- 1-t(fittedfreq)
         return(prob1)
                }
#############################################################
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.