R/mcmc.2pnoh_alg.R

Defines functions .mcmc.mastery.2pnoh .draw.itemvariances.2pnoh .mcmc.deviance.2pnoh .draw.itempars.2pnoh .draw.theta.2pnoh .draw.Z.2pnoh

## File Name: mcmc.2pnoh_alg.R
## File Version: 0.17


######################
# draw latent responses Z
.draw.Z.2pnoh <- function( aM, bM, theta, N, I, threshlow, threshupp ){
    # calculate means
    mij <- aM * ( theta - bM )
    # simulate uniform data
    rij <- matrix( stats::runif( N*I ), nrow=N, ncol=I )
    # calculate corresponding value
    pl <- stats::pnorm( threshlow, mean=mij)
    pu <- stats::pnorm( threshupp, mean=mij)
    pij <- pl + (pu-pl)*rij
    # simulate Z
    Zij <- stats::qnorm( pij, mean=mij )
    return(Zij)
        }

########################################
# draw theta
.draw.theta.2pnoh <- function( aM, bM, N, I, Z ){
    vtheta <- 1 / ( rowSums( aM^2 ) + 1  )
    mtheta <- rowSums( aM * ( Z + aM*bM ) ) * vtheta
    theta <- stats::rnorm( N, mean=mtheta, sd=sqrt( vtheta ) )
    v1 <- stats::var(mtheta)
    res <- list("theta"=theta )
    return(res)
            }

##########################################
# draw item parameters in the 2PNOH model
.draw.itempars.2pnoh <- function( theta, Z, I, N, a, b,
        xi, omega, sig, nu, itemgroup, K, Ik,  weights){

    aM <- matrix( a, nrow=N, ncol=I, byrow=TRUE )

    #************************
    # sampling beta parameters
    v.ik <- 1 / ( N * a^2 + 1 / sig^2 )
    if ( is.null(weights ) ){
        m.ik <- a * colSums( aM * theta - Z  ) + xi[ itemgroup ] / sig^2
                    }
    if ( ! is.null(weights ) ){
        m.ik <- a * colSums( weights*(aM * theta - Z)  ) + xi[ itemgroup ] / sig^2
                    }
    m.ik <- m.ik * v.ik
    b <- stats::rnorm( I, mean=m.ik, sd=sqrt(v.ik ) )
    bM <- matrix( b, nrow=N, ncol=I, byrow=TRUE )

    #************************
    # sampling alpha parameters
    v.ik <- 1 / ( colSums( ( theta - bM  )^2 ) + 1 /nu^2 )
    if ( is.null(weights ) ){
        m.ik <- colSums( ( theta - bM) *Z  ) + omega[ itemgroup ] / nu^2
                    }
    if ( ! is.null(weights ) ){
        m.ik <- colSums( weights*( theta - bM) *Z  ) + omega[ itemgroup ] / nu^2
                    }
    m.ik <- m.ik * v.ik
    a <- stats::rnorm( I, mean=m.ik, sd=sqrt(v.ik ) )

    #*********************************
    # sampling of xi parameter
    m.xi <- stats::aggregate( b, list(itemgroup), mean )[,2]
    xi <- stats::rnorm(K, mean=m.xi, sd=sqrt( sig^2 / Ik) )

    #*********************************
    # sampling of omega parameter
    m.xi <- stats::aggregate( a, list(itemgroup), mean )[,2]
    omega <- stats::rnorm(K, mean=m.xi, sd=sqrt( nu^2 / Ik) )

    # output
    return( list( "a"=a, "b"=b, "xi"=xi, "omega"=omega ) )
            }
#################################################
# compute deviance
.mcmc.deviance.2pnoh <- function( aM, bM, theta, dat, dat.resp,
                weights, eps ){
    pij <- stats::pnorm( aM * theta - bM )
    llij <- log( dat.resp * ( dat*pij + ( 1-dat )*(1-pij) ) + eps )
    if ( is.null( weights ) ){ deviance <- -2*sum( llij ) }
    if ( ! is.null( weights ) ){
        deviance <- -2*sum( rowSums(llij) * weights )
                    }
    return(deviance)
                }
####################################################
# draw item variances from inverse chi square distributions
.draw.itemvariances.2pnoh <- function(a,b,I, itemgroup, xi, omega, prior.variance ){
        # inverse gamma distribution
        # n <- 20
        # sig2 <- 1
        # 1 / stats::rgamma( 1, n/2, n*sig2/2 )
        a0 <- prior.variance[1]
        b0 <- prior.variance[2]
        #****
        # sample sig2
#        tau2 <- ( sum( ( b - xi[ itemgroup ] )^2 ) + 1 )
#        p1 <- 1 / rchisq( 1, df=I + 1 )
#        sig <- sqrt( tau2 * p1 )
        sig <- sqrt( 1 / stats::rgamma( 1, (I+a0)/2, ( sum( ( b - xi[ itemgroup ] )^2 ) + b0 ) / 2 )    )

        #****
        # sample sig2
#        tau2 <- ( sum( ( a - omega[ itemgroup ] )^2 ) + 1 )
#        p1 <- 1 / rchisq( 1, df=I + 1 )
#        nu <- sqrt( tau2 * p1 )
        nu <- sqrt( 1 / stats::rgamma( 1, (I+a0)/2, ( sum( ( a - omega[ itemgroup ] )^2 ) + b0 ) / 2 )    )
        res <- list("sig"=sig, "nu"=nu )
        return(res)
        }
#################################################
# calculation of mastery probabilities
.mcmc.mastery.2pnoh <- function( xi, omega, N, K, weights, theta, prob.mastery ){
    h1 <- stats::pnorm( matrix( omega, nrow=N, ncol=K, byrow=TRUE) *
            ( theta - matrix( xi, nrow=N, ncol=K, byrow=TRUE) ) )
    if ( is.null(weights)){
        nonmastery <- colMeans( h1 < prob.mastery[1] )
        transition <- colMeans( ( h1 < prob.mastery[2] ) * (h1> prob.mastery[1] ) )
        mastery <- colMeans( h1 > prob.mastery[2] )
                }
    if ( ! is.null(weights)){
        nonmastery <- colMeans( weights*(h1 < prob.mastery[1] ) )
        transition <- colMeans( weights*( h1 < prob.mastery[2] ) * (h1> prob.mastery[1] ) )
        mastery <- colMeans( weights*(h1 > prob.mastery[2] ) )
                }
    res <- list( "nonmastery"=as.vector(nonmastery), "transition"=as.vector(transition),
            "mastery"=as.vector(mastery) )
    return(res)
        }
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.