#' sl3 extension: Density Estimation With Mean Model and Homoscedastic normal errors
#'
#' This learner assumes a mean model with homoscedastic errors: Y ~ E(Y|W) + epsilon. E(Y|W) is fit using a glm,
#' and then the errors are assumed normally distributed epsilon_i ~ Normal(0, sigma_i) where sigma_i is the estimated standard error of the residual.
#'
#' @docType class
#'
#' @importFrom R6 R6Class
#' @importFrom assertthat assert_that is.count is.flag
#'
#' @export
#'
#' @keywords data
#'
#' @return Learner object with methods for training and prediction. See
#' \code{\link{Lrnr_base}} for documentation on learners.
#'
#' @format \code{\link{R6Class}} object.
#'
#' @family Learners
#'
#' @section Parameters:
#' \describe{
#' \item{\code{intercept, default=TRUE}}{include intercept in mean model}
#' \item{\code{transfun, default=identity}}{function to transform outcome}
#' }
#'
Lrnr_density_gaussian <- R6Class(
classname = "Lrnr_density_gaussian",
inherit = Lrnr_base, portable = TRUE,
class = TRUE,
public = list(
initialize = function(intercept = TRUE, transfun= function(x) x, ...) {
params <- args_to_list()
super$initialize(params = params, ...)
}
),
private = list(
.properties = c("density"),
.train = function(task) {
args <- self$params
args$transfun <- NULL
outcome_type <- self$get_outcome_type(task)
if (is.null(args$family)) {
args$family <- outcome_type$glm_family(return_object = TRUE)
}
family_name <- args$family$family
linkinv_fun <- args$family$linkinv
link_fun <- args$family$linkfun
transfun <- self$params$transfun
# specify data
if (args$intercept) {
args$x <- as.matrix(task$X_intercept)
} else {
args$x <- as.matrix(task$X)
}
args$y <- transfun(outcome_type$format(task$Y))
if (task$has_node("weights")) {
args$weights <- task$weights
}
if (task$has_node("offset")) {
args$offset <- task$offset_transformed(link_fun)
}
args$control <- glm.control(trace = FALSE)
fit_object <- .call_with_args_vibr(stats::glm.fit, args)
resids <- fit_object$residuals
fit_object$stdres <- .stdres(resids=resids, df=fit_object$df.residual, args$x, train=FALSE)
fit_object$linear.predictors <- NULL
fit_object$weights <- NULL
fit_object$prior.weights <- NULL
fit_object$y <- NULL
fit_object$residuals <- NULL
fit_object$fitted.values <- NULL
fit_object$effects <- NULL
fit_object$qr <- NULL
fit_object$linkinv_fun <- linkinv_fun
fit_object$link_fun <- link_fun
fit_object$training_offset <- task$has_node("offset")
return(fit_object)
},
.predict = function(task) {
verbose <- getOption("sl3.verbose")
if (self$params$intercept) {
X <- task$X_intercept
} else {
X <- task$X
}
predictions <- rep.int(NA, nrow(X))
if (nrow(X) > 0) {
coef <- self$fit_object$coef
if (!all(is.na(coef))) {
eta <- as.matrix(X
[, which(!is.na(coef)),
drop = FALSE,
with = FALSE
]) %*% coef[!is.na(coef)]
if (self$fit_object$training_offset) {
offset <- task$offset_transformed(self$fit_object$link_fun, for_prediction = TRUE)
eta <- eta + offset
}
predictions <- as.vector(self$fit_object$linkinv_fun(eta))
}
}
transfun <- self$params$transfun
suppressWarnings(tY <- transfun(task$Y)) # for log xform, these should have density=0 automatically
dropidx <- which(is.na(tY))
tY[dropidx] <- 0
errors <- tY - predictions
dens_preds <- dnorm(errors, 0, self$fit_object$stdres)
dens_preds[dropidx] <- 0
return(dens_preds)
},
.required_packages = c()
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.