View source: R/differential_abundance.R
findDACombinedClusters | R Documentation |
This function assumes that each DAseq result is produced from a different subset of the same integrated cell embedding and has a common reference condition (aka. control).
findDACombinedClusters( obj_list, ref_label, resolution = 0.05, prune.SNN = 1/15, group.singletons = FALSE, min.cell = NULL, ... )
obj_list |
A list of DAseq results |
ref_label |
The control condition common to all DAseq results |
resolution |
parameter for Seurat function FindClusters(), default 0.05 |
prune.SNN |
parameter for Seurat function FindNeighbors(), default 1/15 |
group.singletons |
parameter for Seurat function FindClusters(), default True |
min.cell |
integer, number of cells below which a DA region will be removed as outliers, default NULL, use minimum k value in k-vector |
... |
other parameters to pass to Seurat FindClusters() |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.