findDACombinedClusters: Combine differential abundant subpopulation

View source: R/differential_abundance.R

findDACombinedClustersR Documentation

Combine differential abundant subpopulation

Description

This function assumes that each DAseq result is produced from a different subset of the same integrated cell embedding and has a common reference condition (aka. control).

Usage

findDACombinedClusters(
  obj_list,
  ref_label,
  resolution = 0.05,
  prune.SNN = 1/15,
  group.singletons = FALSE,
  min.cell = NULL,
  ...
)

Arguments

obj_list

A list of DAseq results

ref_label

The control condition common to all DAseq results

resolution

parameter for Seurat function FindClusters(), default 0.05

prune.SNN

parameter for Seurat function FindNeighbors(), default 1/15

group.singletons

parameter for Seurat function FindClusters(), default True

min.cell

integer, number of cells below which a DA region will be removed as outliers, default NULL, use minimum k value in k-vector

...

other parameters to pass to Seurat FindClusters()


altairwei/rhapsodykit documentation built on Feb. 1, 2023, 8:52 a.m.