#' Perform likelihood ratio test between methylation samples
#'
#' \code{bpr_diff_test_wrap} is a function that wraps all the necessary
#' subroutines for performing statistical testing between methylation samples
#' using the likelihood ratio test.
#'
#' @param x The binomial distributed observations. A list containing two lists
#' for control and treatment samples. Each list has elements of length N,
#' where each element is an L x 3 matrix of observations, where 1st column
#' contains the locations. The 2nd and 3rd columns contain the total reads and
#' number of successes at the corresponding locations, repsectively. See
#' \code{\link{process_haib_caltech_wrap}} on a possible way to get this data
#' structure.
#' @param w Optional vector of initial parameter / coefficient values.
#' @param basis Optional basis function object, default is an 'rbf' object, see
#' \code{\link{create_rbf_object}}.
#' @inheritParams bpr_optimize
#'
#' @return A 'bpr_test' object which, in addition to the input
#' parameters, consists of the following variables: \itemize{ \item{
#' \code{W_opt}: An Nx(2M+2) matrix with the optimized parameter values. Each
#' row of the matrix corresponds to the concatenated coefficients of the
#' methylation profiles from both samples. The columns are of the same length
#' as the concatenated parameter vector [w_contr, w_treat] (i.e. number of
#' basis functions). } \item{ \code{Mus}: A list containing two matrices of
#' size N x M with the RBF centers for each sample, if basis object is
#' \code{\link{create_rbf_object}}, otherwise NULL.} \item{train}: The
#' training data. \item{test}: The test data. \item \code{gex_model}: The
#' fitted regression model. \item \code{train_pred} The predicted values for
#' the training data. \item \code{test_pred} The predicted values for the test
#' data. \item \code{train_errors}: The training error metrics. \item
#' \code{test_errors}: The test error metrics.}
#'
#' @author C.A.Kapourani \email{C.A.Kapourani@@ed.ac.uk}
#'
#' @seealso \code{\link{bpr_optimize}}, \code{\link{create_basis}},
#' \code{\link{eval_functions}}, \code{\link{train_model_gex}},
#' \code{\link{predict_model_gex}}
#'
#' @export
bpr_diff_test_wrap <- function(x, w = NULL, basis = NULL,
opt_method = "CG", opt_itnmax = 100,
is_parallel = TRUE, no_cores = NULL){
# Check that x is a list object
assertthat::assert_that(is.list(x))
# Learn methylation profiles for control samples
message("Learning control methylation profiles ...\n")
out_contr_opt <- bpr_optim(x = x$control,
w = w,
basis = basis,
fit_feature = "NLL",
cpg_dens_feat = FALSE,
opt_method = opt_method,
opt_itnmax = opt_itnmax,
is_parallel = is_parallel,
no_cores = no_cores)
# Learn methylation profiles for treatment samples
message("Learning treatment methylation profiles ...\n")
out_treat_opt <- bpr_optim(x = x$treatment,
w = w,
basis = basis,
fit_feature = "NLL",
cpg_dens_feat = FALSE,
opt_method = opt_method,
opt_itnmax = opt_itnmax,
is_parallel = is_parallel,
no_cores = no_cores)
# Number of basis functions + bias term
params <- basis$M + 1
##-------------------------------------
# Alternative hypothesis
##-------------------------------------
# Obtain the NLL of the control (alternative)
nll_contr_alt <- out_contr_opt$W_opt[, params + 1]
# Obtain the NLL of the treatment (alternative)
nll_treat_alt <- out_treat_opt$W_opt[, params + 1]
# NLL for alternative hypothesis
nll_alt <- nll_contr_alt + nll_treat_alt
##-------------------------------------
# NULL hypothesis
##-------------------------------------
# Obtain the NLL of the control (null)
nll_contr_null <- out_contr_opt$W_opt[, params + 1]
# Obtain the NLL of the treatment (null)
nll_treat_null <- vector(mode = "numeric", length = length(x$treatment))
for (i in 1:length(x$treatment)){
# Create design matrix H
H <- design_matrix(x = basis,
obs = x$treatment[[i]][,1])$H
# Evaluate the likelihood under control parameters
nll_treat_null[i] <- bpr_likelihood(w = out_contr_opt$W_opt[i, 1:params],
H = H,
data = x$treatment[[i]],
is_NLL = TRUE)
}
# NLL for null hypothesis
nll_null <- nll_contr_null + nll_treat_null
##------------------------------------
# Compute log likelihood ratio test
##------------------------------------
lr_test <- 2 * (nll_null - nll_alt)
message("Done!\n\n")
# Create 'bpr_predict' object
obj <- structure(list(basis = out_treat_opt$basis,
opt_method = opt_method,
opt_itnmax = opt_itnmax,
W_opt_contr = out_contr_opt$W_opt,
W_opt_treat = out_treat_opt$W_opt,
Mus = list(control = out_contr_opt$Mus,
treatment = out_treat_opt$Mus),
nll_contr_alt = nll_contr_alt,
nll_treat_alt = nll_treat_alt,
nll_contr_null = nll_contr_null,
nll_treat_null = nll_treat_null,
nll_alt = nll_alt,
nll_null = nll_null,
lr_test = lr_test),
class = "bpr_test")
return(obj)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.