#' Impute missing values/NAs with KNN
#'
#' @name imputeKNN
#'
#' @param obj Input SummarizedExperiment object
#' @param rowmax Maximum fraction of NAs that can exist in a row
#' @param colmax Maximum fraction of NAs that can exist in a column/sample
#' @param k Number of neighbors to be used in the imputation
#' @param maxp Largest block of regions/loci imputed using KNN
#' @param in.place Whether to modify the Beta/counts in place (default: TRUE)
#' @param drop.sparse.samps Whether to drop samples that are too sparse (default: TRUE)
#' @param assay The type of assay ("array", "bisulfite")
#'
#' @return Imputed data matrix that is added to the assays slot
#' @import SummarizedExperiment
#' @export
#'
#' @examples
#' if (requireNamespace("minfi", quietly = TRUE)) {
#' data("array_data_chr14", package = "compartmap")
#' #impute
#' imputed <- imputeKNN(array.data.chr14, assay = "array")
#' }
imputeKNN <- function(
obj,
rowmax = 0.5,
colmax = 0.8,
k = 10,
maxp = 1500,
in.place = TRUE,
drop.sparse.samps = TRUE,
assay = c("array", "atac", "bisulfite")
) {
# match the assay args
assay <- match.arg(assay)
# stop early if there aren't any NAs to impute
if (!any(is.na(assay(obj)))) {
message("No NAs found. Nothing to impute.")
return(obj)
}
# filter out missing data based on chosen rowmax
# otherwise imputation will blow up
obj.clean <- cleanAssayRows(obj, na.max = rowmax, assay = assay)
# drop samples that have too sparse of data to use
# this is the way to filter to samples with sufficient signal
# before getting single cell imputation up
if (drop.sparse.samps) {
message("Dropping samples with >", colmax * 100, "% NAs.")
obj.clean <- cleanAssayCols(obj.clean, na.max = colmax, assay = assay)
# stop if all the samples are now gone...
if (ncol(obj.clean) == 0) {
message("No samples left after sparisty filtering.")
stop("Consider increasing the value of colmax closer to 1 and increasing maxp.")
}
} else {
warning("Imputation may not work with samples that are too sparse!")
}
## check if we are in beta land
is.beta <- min(assays(obj.clean)$Beta, na.rm = TRUE) > 0
is.array <- assay == "array"
impute.input <-
if (is.beta && is.array) {
flogit(assays(obj.clean)$Beta) # assumes beta values and use squeezed M-values
} else if (is.beta && !is.array) {
flogit(assays(obj.clean)$counts) # assumes that bisulfite-seq was given as betas
} else if (!is.beta && is.array) {
assays(obj.clean)$Beta # assumes these are M-values
} else if (!is.beta && !is.array) {
assays(obj.clean)$counts # assumes the assay is bisulfite-seq, calculated as M-values
}
message("Imputing missing data with kNN.")
imputed.data <- impute::impute.knn(
impute.input,
k = k,
rowmax = rowmax,
colmax = colmax,
maxp = maxp
)$data
# add on another counts matrix to the assays slot if not in.place
if (!in.place) {
assays(obj.clean)$imputed.data <- imputed.data
} else {
switch(assay,
# send M-values back to beta
array = assays(obj.clean)$Beta <- fexpit(imputed.data),
bisulfite = assays(obj.clean)$counts <- fexpit(imputed.data)
)
}
return(obj.clean)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.