Description Usage Arguments Value Examples
This function will identify the Biclusters based on LTMG or Quantile normalization
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | RunBicluster(object, ...)
.runBicluster(
object = NULL,
DiscretizationModel = "Quantile",
OpenDual = FALSE,
Extension = 1,
NumBlockOutput = 100,
BlockOverlap = 0.7,
BlockCellMin = 15
)
## S4 method for signature 'IRISFGM'
RunBicluster(
object = NULL,
DiscretizationModel = "Quantile",
OpenDual = FALSE,
Extension = 1,
NumBlockOutput = 100,
BlockOverlap = 0.7,
BlockCellMin = 15
)
|
object |
input IRIS-FGM object |
... |
other arguments passed to methods |
DiscretizationModel |
use different discretization method, including 'Quantile' and 'LTMG.' |
OpenDual |
the flag using the lower bound of condition number. Default: 5 percent of the gene number in current bicluster. |
Extension |
consistency level of the block (0.5-1.0], the minimum ratio between the number of identical valid symbols in a column and the total number of rows in the output. Default: 1.0. |
NumBlockOutput |
number of blocks to report. Default: 100. |
BlockOverlap |
filtering overlapping blocks. Default: 0.7. |
BlockCellMin |
minimum column width of the block. Default: 15 columns. |
It will generate a temporal file on local directory for processed data named 'tmp_expression.txt', discretized file named 'tmp_expression.txt.chars', and biclsuter block named 'tmp_expression.txt.chars.block'.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # based on LTMG discretization
## Not run:
object <- RunBicluster(object,
DiscretizationModel = 'LTMG',
OpenDual = F,
NumBlockOutput = 1000,
BlockOverlap = 0.7,
BlockCellMin = 15)
## End(Not run)
# based on quantile discretization
## Not run:
object <- RunBicluster(object,
DiscretizationModel = 'Quantile',
OpenDual = F,
NumBlockOutput = 1000,
BlockOverlap = 0.7,
BlockCellMin = 15)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.