Description Usage Arguments Details Value Author(s) References See Also Examples
This method constructs the given classifier using the specified training data, gene selection and tuning results.. Subsequently, class labels are predicted for new observations.
For S4 method information, s. classification-methods
.
1 | prediction(X.tr,y.tr,X.new,f,classifier,genesel,models=F,nbgene,tuneres,...)
|
X.tr |
Training gene expression data. Can be one of the following:
|
X.new |
gene expression data. Can be one of the following:
|
y.tr |
Class labels of training observation. Can be one of the following:
WARNING: The class labels will be re-coded for classifier construction to
range from |
f |
A two-sided formula, if |
genesel |
Optional (but usually recommended) object of class
|
nbgene |
Number of best genes to be kept for classification, based
on either
|
classifier |
Name of function ending with |
tuneres |
Analogous to the argument |
models |
a logical value indicating whether the model object shall be returned |
... |
Further arguments passed to the function |
This function builds the specified classifier and predicts the class labels of new observations. Hence, its usage differs from those of most other prediction functions in R.
A object of class predoutput-class
; Predicted classes can be seen by show(predoutput)
Christoph Bernau bernau@ibe.med.uni-muenchen.de
Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Slawski, M. Daumer, M. Boulesteix, A.-L. (2008) CMA - A comprehensive Bioconductor package for supervised classification with high dimensional data. BMC Bioinformatics 9: 439
GeneSelection
, tune
, evaluation
,
compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, ldaCMA
, LassoCMA
,
nnetCMA
, pknnCMA
, plrCMA
,
pls_ldaCMA
, pls_lrCMA
, pls_rfCMA
,
pnnCMA
, qdaCMA
, rfCMA
,
scdaCMA
, shrinkldaCMA
, svmCMA
classification
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ### a simple k-nearest neighbour example
### datasets
## Not run: plot(x)
data(golub)
golubY <- golub[,1]
golubX <- as.matrix(golub[,-1])
###Splitting data into training and test set
X.tr<-golubX[1:30]
X.new<-golubX[31:39]
y.tr<-golubY[1:30]
### 1. GeneSelection
selttest <- GeneSelection(X=X.tr, y=y.tr, method = "t.test")
### 2. tuning
tunek <- tune(X.tr, y.tr, genesel = selttest, nbgene = 20, classifier = knnCMA)
### 3. classification
pred <- prediction(X.tr=X.tr,y.tr=y.tr,X.new=X.new, genesel = selttest,
tuneres = tunek, nbgene = 20, classifier = knnCMA)
### show and analyze results:
show(pred)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.