cemitool | R Documentation |
Defines co-expression modules and runs several different analyses.
cemitool(
expr,
annot,
gmt,
interactions,
filter = TRUE,
filter_pval = 0.1,
apply_vst = FALSE,
n_genes,
eps = 0.1,
cor_method = c("pearson", "spearman"),
cor_function = "cor",
network_type = "unsigned",
tom_type = "signed",
set_beta = NULL,
force_beta = FALSE,
sample_name_column = "SampleName",
class_column = "Class",
merge_similar = TRUE,
rank_method = "mean",
ora_pval = 0.05,
gsea_scale = TRUE,
gsea_min_size = 15,
gsea_max_size = 1000,
min_ngen = 30,
diss_thresh = 0.8,
plot = TRUE,
plot_diagnostics = TRUE,
order_by_class = TRUE,
center_func = "mean",
directed = FALSE,
verbose = FALSE
)
expr |
Gene expression |
annot |
Sample annotation |
gmt |
A data.frame containing two columns, one with pathways and one with genes |
interactions |
A data.frame containing two columns with gene names. |
filter |
Logical. If TRUE, will filter expression data. |
filter_pval |
P-value threshold for filtering. Default |
apply_vst |
Logical. If TRUE, will apply Variance Stabilizing Transform before filtering genes.
Currently ignored if parameter |
n_genes |
Number of genes left after filtering. |
eps |
A value for accepted R-squared interval between subsequent beta values. Default is 0.1. |
cor_method |
A character string indicating which correlation coefficient is
to be computed. One of |
cor_function |
A character string indicating the correlation function to be used. Supported functions are
currently 'cor' and 'bicor'. Default is |
network_type |
A character string indicating if network type should be computed
as |
tom_type |
A character string indicating if the TOM type should be computed
as |
set_beta |
A value to override the automatically selected beta value. Default is NULL. |
force_beta |
Whether or not to automatically force a beta value based on number of samples. Default is FALSE. |
sample_name_column |
A character string indicating the sample column name of the annotation table. |
class_column |
A character string indicating the class column name of the annotation table. |
merge_similar |
Logical. If |
rank_method |
Character string indicating how to rank genes. Either "mean" (the default) or "median". |
ora_pval |
P-value for overrepresentation analysis. Default |
gsea_scale |
If TRUE, apply z-score transformation for GSEA analysis. Default is |
gsea_min_size |
Minimum size of gene sets for GSEA analysis. Default is |
gsea_max_size |
Maximum size of gene sets for GSEA analysis. Default is |
min_ngen |
Minimal number of genes per submodule. Default |
diss_thresh |
Module merging correlation threshold for eigengene similarity.
Default |
plot |
Logical. If |
plot_diagnostics |
Logical. If |
order_by_class |
Logical. If |
center_func |
Character string indicating the centrality measure to show in the plot. Either 'mean' (the default) or 'median'. |
directed |
Logical. If |
verbose |
Logical. If |
Object of class CEMiTool
# Get example expression data
data(expr0)
# Run CEMiTool analyses
cem <- cemitool(expr=expr0)
# Run CEMiTool applying Variance Stabilizing Transformation to data
cem <- cemitool(expr=expr0, apply_vst=TRUE)
# Run CEMiTool with additional processing messages
cem <- cemitool(expr=expr0, verbose=TRUE)
## Not run:
# Run full CEMiTool analysis
## Get example sample annotation data
data(sample_annot)
## Read example pathways file
gmt_fname <- system.file("extdata", "pathways.gmt", package = "CEMiTool")
gmt_in <- read_gmt(gmt_fname)
## Get example interactions file
int_df <- read.delim(system.file("extdata", "interactions.tsv", package = "CEMiTool"))
## Run CEMiTool
cem <- cemitool(expr=expr0, annot=sample_annot, gmt=gmt_in,
interactions=int_df, verbose=TRUE, plot=TRUE)
# Create report as html file
generate_report(cem, directory = "./Report", output_format="html_document")
# Write analysis results into files
write_files(cem, directory="./Tables", force=TRUE)
# Save all plots
save_plots(cem, "all", directory="./Plots")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.