#' Compute matchSCore for a specified value of specificity and ntop ranked genes
#'
#' This function computes the matchSCore for different cutoffs of marker specificity
#' and top cluster markers
#' @param sim A Splatter simulation object.
#' @param specificity The proportion of top-ranked markers for each simulated group.
#' @param tool_out The output of the used tool to cluster your data. It should be
#' as the output of the `seurat3_run` function.
#' @param ntop The proportion of top-ranked markers for each cluster.
#' @param tool_run The name of the function used to run the clusters without quote.
#' Default=`seurat3_run`).
#' @param labels Cluster labels as in the output of the [compute_labels()] function.
#'
#' @return A `matchSCore` value
#'
#' @export
#'
#' @examples
#' # TODO
tool_scores_by_specificity <- function(sim,
specificity,
tool_out,
ntop,
tool_run = seurat3_run,
labels) {
fd <- rowData(sim)
pd <- colData(sim)
groups <- factor(pd$Group)
lev <- levels(groups)
k <- length(lev)
gene_cl <- do.call(tool_run, args = list(sim, ntop, tool_out))
rank_df <- rank_sim(sim)
markers <- markers_by_specificity(rank_df, specificity, k)
score <- matchSCore(markers, gene_cl, labels)
return(score)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.