\fontsize{8}{20}

library("knitr")
opts_chunk$set(tidy.opts=list(width.cutoff=80),tidy=TRUE,dev="png",dpi=150)

Read in the NMF result object

NMF was run using function NMF from sklearn.decomposition in Python scikit-learn library. The results were then integrated into an R object, which we read in below. We varied the number of modules (n_components argument in NMF function) from 5 to 25, and eventually chose to use the result from K=18, because it resulted in a low inconsistency and a high cophenetic coefficient when repeated 10 times with random initial conditions.

load_obj <- function(file.path){
  temp.space <- new.env()
  obj<-load(file.path, temp.space)
  obj2<-get(obj, temp.space)
  rm(temp.space)
  return(obj2)
}
nmf_res=load_obj("NMF/Results/P2_use/result_tbls.Robj")
nmf_K18=nmf_res$`K=18`$rep0

nmf_K18 contains the genes by modules matrix (G) and the modules by cells matrix (C) resulted from running NMF with n_components=18.

Find gene modules that are good predictors for experimental batches

First look at the PCA plot for all transcriptomes with all gene modules (using matrix C)

library("Seurat")
ALL_C18=new("seurat",raw.data=nmf_K18$C)
ALL_C18=Setup(ALL_C18,project="allC18",min.cells = 2, names.field = 1,names.delim = "_",do.logNormalize = F,is.expr = 0.01,min.genes = 1)
ident=ALL_C18@ident
levels(ident)<-c(levels(ident),"MZoep","mix")
ident[grep("wt",ident)]="mix"
ident[grep("oep",ident)]="mix"
ident[grep("oep_p0",names(ident))]="MZoep"
ALL_C18@ident=ident

ALL_C18=PCA(ALL_C18,do.print = F,pcs.print = 3,genes.print = 6,pc.genes = rownames(ALL_C18@data))
PCAPlot(ALL_C18,1,2,pt.size = 0.75)

Then separate transcriptomes from the two genotypes (wild-type and MZoep) and find batch modules for each genotype

wt_cells=c(grep("wt",ALL_C18@cell.names),grep("zf",ALL_C18@cell.names))
oep_cells=c(grep("oep",ALL_C18@cell.names))
ALL_C18wt=SubsetData(ALL_C18,cells.use = ALL_C18@cell.names[wt_cells])
ALL_C18oep=SubsetData(ALL_C18,cells.use = ALL_C18@cell.names[oep_cells])

batch_modulewt=BatchGene(ALL_C18wt,idents.use=c("zf1","zf2","zf3"),genes.use=rownames(ALL_C18wt@data),auc.cutoff = 0.67)
batch_moduleoep=BatchGene(ALL_C18oep,idents.use=c("MZoep","mix"),genes.use=rownames(ALL_C18oep@data),auc.cutoff = 0.67)

batch_modules18=union(batch_moduleoep,batch_modulewt)
print("Batch modules:")
print(batch_modules18)
batch_genes=nmf_K18$top30genes[,paste0("Module.",batch_modules18)]
#knitr::kable(batch_genes,caption = "Top 30 genes in batch modules")
print(xtable::xtable(batch_genes,caption = "Top 30 genes in batch modules"),type="latex",scalebox=0.55)

Generate PCA plot for all cells with all the non-batch gene modules

ALL_C18=PCA(ALL_C18,do.print = F,pcs.print = 3,genes.print = 6,pc.genes = setdiff(rownames(ALL_C18@data),batch_modules18))
PCAPlot(ALL_C18,1,2,pt.size = 0.75)

Cells are now much less separated by batch in the plot.

Remove batch effects from the original expression matrix

This batch effect removed expression matrix will be used later for spatial mapping.

read in the expression matrix used for running NMF

tbl.dir="./NMF/Datasets/"
dataset=read.table(paste0(tbl.dir,"ALL_noBatchCorrection_var.txt"))
dataset_scl=read.csv("./NMF/Results/P2_use/tables/scaled_data.csv",row.names = 1)

Removed batch effect

This is done by subtracting the product of the batch matrices (portions of matrix G and C with the batch modules) from the original data matrix.

rmNMFbatch <- function(batch_modules, G, C, dataset_scl, dataset){
  #multiply the matrices to calculate batch effect:
  batch_scl=as.matrix(G[,paste0("X",batch_modules)]) %*% as.matrix(C[batch_modules,])

  #subtract it from the dataset used for running NMF
  batchRM_scl=dataset_scl-batch_scl ##dataset_scl is the nonzero-median scaled dataset

  #correct for negative values
  batchRM_scl[batchRM_scl<0]=0

  #calculate non-zero median of each gene in the original dataset
  binaryData=dataset>0 ##dataset is the original log dataset (before median scaling)
  dataset_2=expm1(dataset)
  scl_fac=unlist(lapply(rownames(dataset_2), function(x) median(as.numeric(dataset_2[x,binaryData[x,]]))))

  #calculate non-zero median of the scaled dataset
  binaryData=dataset_scl>0
  dataset_2=expm1(dataset_scl)
  scl_med=unlist(lapply(rownames(dataset_2), function(x) median(as.numeric(dataset_2[x,binaryData[x,]]))))

  #calculate non-zero median of the scaled dataset with batch effect subtracted
  #binaryData=batchRM_scl>0 ##
  dataset_2=expm1(batchRM_scl)
  batchRM_scl_med=unlist(lapply(rownames(dataset_2), function(x) median(as.numeric(dataset_2[x,binaryData[x,]]))))  

  med_fac=batchRM_scl_med/scl_med
  final_scl_fac=scl_fac*med_fac/scl_med
  #final_scl_fac=scl_fac/scl_med

  #the medians in the scaled dataset is adjusted to the median of the non-zero medians
  #transform the batch corrected dataset to its (more or less) original scale
  ##batchRM_unscl=log1p(sweep(expm1(batchRM_scl),1,scl_fac/median(scl_fac),"*"))
  batchRM_unscl=log1p(sweep(expm1(batchRM_scl),1,final_scl_fac,"*"))
  return(batchRM_unscl)
}
K18_noBatch=rmNMFbatch(batch_modules18,nmf_K18$G,nmf_K18$C,dataset_scl,dataset)

Compare datasets before and after batch correction

PCA plots are used to visualize transcriptomes in gene space before and after batch effect removal.

data_raw=new("seurat",raw.data=dataset)
K18_noBatch=new("seurat",raw.data=K18_noBatch)

data_raw=Setup(data_raw,project="pre_batch_rm",min.cells = 1, names.field = 1,names.delim = "_",do.logNormalize = F,is.expr = 0.1,min.genes = 10)
K18_noBatch=Setup(K18_noBatch,project="post_batch_rm",min.cells = 1, names.field = 1,names.delim = "_",do.logNormalize = F,is.expr = 0.1,min.genes = 10)

ident=data_raw@ident
levels(ident)<-c(levels(ident),"MZoep","mix")
ident[grep("wt",ident)]="mix"
ident[grep("oep",ident)]="mix"
ident[grep("oep_p0",names(ident))]="MZoep"
data_raw@ident=ident
K18_noBatch@ident=ident

data_raw=PCA(data_raw,pcs.print = 3,genes.print = 6,pc.genes = rownames(data_raw@data))
PCAPlot(data_raw,1,2,pt.size = 0.75)
K18_noBatch=PCA(K18_noBatch,pcs.print = 3,genes.print = 6,pc.genes = rownames(K18_noBatch@data))
PCAPlot(K18_noBatch,1,2,pt.size = 0.75)

Save the dataset with batch effect removed for spatial mapping with Seurat

save.dir="./Datasets/"
write.table(K18_noBatch@data,file=paste0(save.dir,"Batch_corrected_var.txt"),quote=FALSE,sep="\t")

Clustering analysis of cells based on non-batch gene modules

First, Scale matrix C and assign names to modules

The C matrix (non-batch modules by cells) is scaled such that each row has the same maximum value before clustering. Modules are assigned names according to knowledge about their top ranked genes.

maxScl <- function(df, dir='row', max_value=NULL, log_space=F){
  if(dir=='row'){
    dir=1
  }else if(dir=='col'){
    dir=2
  }else{
    print("dir must be 'row' or 'col'.")
    return
  }
  if(is.null(max_value)){
    max_value=median(apply(df,dir,max))
  }
  if(log_space){
    df=expm1(df)
    max_value=expm1(max_value)
  }
  df_scl=sweep(df,dir,apply(df,dir,max),"/")
  df_scl=df_scl*max_value
  if(log_space){
    df_scl=log1p(df_scl)
  }
  return(df_scl)
}

scld_C=maxScl(nmf_K18$C)
rownames(scld_C)=c("0","1","2","Marginal","EVL","5","6","7","Marginal Dorsal","Dorsal","10","Apoptotic-like","YSL","13","PGC","Ventral Animal","Dorsal Animal","Ventral")

Apply hierarchical clustering

Davies-Bouldin index is used to determin the optimal number of clusters (as the number that gives the lowest DB index). Clustering result is shown as heatmaps, with color bars on top indicating genotype (dark blue = wt; light blue = MZoep) or cluster membership.

library(gplots)
library(RColorBrewer)
library(clusterSim)
cluster_map <- function(scld_C,genos=NULL,group=c("cluster","geno"),group_colors=NULL,den_cut=0.75,metric=c("cor","dist"),method="complete",DB=F){
  if(metric=="cor"){
    stds=apply(scld_C,2,sd)
    zero_var=which(stds==0)
    if(length(zero_var)>0){
      print(paste("removing ",length(zero_var),"zero-variance cell(s) from dataframe:"))
      print(colnames(scld_C)[zero_var])
      scld_C=scld_C[,-zero_var]
    }
    hc <- hclust(as.dist(1-cor(as.matrix(scld_C))), method=method)
  }else if(metric=="dist"){
    hc <- hclust(dist(as.matrix(t(scld_C)),method="euclidean"), method=method)
  }
  if("cluster"%in%group){
    if(den_cut<1){
      mycl <- cutree(hc, h=max(hc$height)*den_cut)
    }else{
      mycl <- cutree(hc, k = den_cut)
    }
    if(is.null(group_colors)){
      mycolhc <- topo.colors(length(unique(mycl)))
      mycolhc <- mycolhc[as.vector(mycl)]
    }else{
      mycolhc <- group_colors[as.vector(mycl)]
    }
    cluster=mycolhc
  }
  if("geno"%in%group){
    geno_code=vector("numeric",length=dim(scld_C)[2])
    geno_code=geno_code*0+1
    i=1
    for(geno in genos){
      geno_code[grep(geno,colnames(scld_C))]=i*2
      i=i+1
    }
    if(is.null(group_colors)){
      mycolgeno <- topo.colors(2*length(genos))
      mycolgeno <- mycolgeno[geno_code]
    }else{
      mycolgeno <- group_colors[geno_code]
    }
    geno=mycolgeno
  }
  hmcol <- colorRampPalette(brewer.pal(9, "YlGnBu"))(100)
  if(DB){
    DBs=c()
    for(i in c(3:20)){
      mycl <- cutree(hc, k=i)
      if(metric=='cor'){
        DB=index.DB(t(scld_C), mycl,dist(1-cor(as.matrix(scld_C))), centrotypes="centroids")
      }else if(metric=='dist'){
        DB=index.DB(t(scld_C), mycl,dist(as.matrix(t(scld_C)),method="euclidean"), centrotypes="centroids")
      }
      DBs=c(DBs,DB$DB)
    }
    plot(c(3:20),DBs,type = 'b',main = "Davies-Bouldin Index",xlab = "K")
  }
  for(grp in group){
    heatmap.2(as.matrix(scld_C), Colv = as.dendrogram(hc), ColSideColors=get(grp), col=hmcol,dendrogram ="column",sepwidth=0,trace='none',labCol = "",cexRow = 0.65)
  }
  return(mycl)
}

cluster_info=cluster_map(as.matrix(scld_C[setdiff(rownames(scld_C),batch_modules18),]),group = c("geno","cluster"),genos = c("oep"),metric="cor",den_cut=10,DB=T)

Repeat cluster without cells expressing high levels of YSL module

YSL is intensinally removed in our sample collecting procedure. The YSL module detected is likely resulted from incomplete yolk removal or contamination from YSL.

hist(as.numeric(scld_C['YSL',]),breaks=50, main="", xlab = "YSL module expression in cell")
#length(which(scld_C['YSL',]>1)) #=9
C_noYSL=scld_C[,colnames(scld_C)[which(scld_C['YSL',]<0.7)]]

Again, we use Davies-Bouldin index to determin the optimal number of clusters, and show clustering result as heatmaps, with color bars on top indicating genotype (dark blue = wt; light blue = MZoep) or cluster membership.

cluster_info=cluster_map(as.matrix(C_noYSL[setdiff(rownames(C_noYSL),c("YSL",batch_modules18)),]),group = c("geno","cluster"),genos = c("oep"),metric="cor",den_cut=9,DB=T)


farrellja/URD documentation built on June 17, 2020, 4:48 a.m.