## ---- eval = FALSE-------------------------------------------------------
# library(devtools)
# install_github("fintzij/BDAepimodel",build_vignettes=TRUE)
# library(BDAepimodel)
#
## ---- include=FALSE------------------------------------------------------
require(ggplot2)
require(Rcpp)
require(MCMCpack)
require(BDAepimodel)
set.seed(1834)
## ------------------------------------------------------------------------
r_meas_process <- function(state, meas_vars, params){
# in our example, rho will be the name of the binomial sampling probability parameter.
# this function returns a matrix of observed counts
rbinom(n = nrow(state),
size = state[,meas_vars], # binomial sample of the unobserved prevalenc
prob = params["rho"]) # sampling probability
}
d_meas_process <- function(state, meas_vars, params, log = TRUE) {
# note that the names of the measurement variables are endowed with suffixes "_observed" and "_augmented". This is required.
# we will declare the names of the measurement variables shortly.
dbinom(x = state[, "I_observed"],
size = state[, "I_augmented"],
prob = params["rho"], log = log)
}
## ------------------------------------------------------------------------
epimodel <- init_epimodel(obstimes = seq(0, 105, by = 7), # vector of observation times
popsize = 750, # population size
states = c("S", "I", "R"), # compartment names
params = c(beta = 0.00035, # infectivity parameter
mu = 1/7, # recovery rate
rho = 0.2, # binomial sampling probability
S0 = 0.9, I0 = 0.03, R0 = 0.07), # initial state probabilities
rates = c("beta * I", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, -1, 1), ncol = 3, byrow = T), # flow matrix
meas_vars = "I", # name of measurement variable
r_meas_process = r_meas_process, # measurement process functions
d_meas_process = d_meas_process)
## ------------------------------------------------------------------------
# simulate the epidemic and the dataset. The lump argument instructs the simulation function to simulate the epidemic on the lumped state space of counts, which is more efficient than doing so on the unlumped state space of individuals.
epimodel <- simulate_epimodel(epimodel = epimodel, lump = TRUE, trim = TRUE)
plot(x = epimodel$pop_mat[,"time"], y = epimodel$pop_mat[,"I"], "l", ylim = c(-5, 200), xlab = "Time", ylab = "Prevalence")
points(x = epimodel$dat[,"time"], y = epimodel$dat[,"I"])
## ------------------------------------------------------------------------
head(epimodel$obs_mat)
## ------------------------------------------------------------------------
head(epimodel$init_config)
## ------------------------------------------------------------------------
head(epimodel$pop_mat)
## ------------------------------------------------------------------------
Rcpp::cppFunction("Rcpp::NumericVector getSuffStats_SIR(const Rcpp::NumericMatrix& pop_mat, const int ind_final_config) {
// initialize sufficient statistics
int num_inf = 0; // number of infection events
int num_rec = 0; // number of recovery events
double beta_suff = 0; // integrated hazard for the infectivity
double mu_suff = 0; // integrated hazard for the recovery
// initialize times
double cur_time = 0; // current time
double next_time = pop_mat(0,0); // time of the first event
double dt = 0; // time increment
// compute the sufficient statistics - loop through the pop_mat matrix until
// reaching the row for the final observation time
for(int j = 0; j < ind_final_config - 1; ++j) {
cur_time = next_time;
next_time = pop_mat(j+1, 0); // grab the time of the next event
dt = next_time - cur_time; // compute the time increment
beta_suff += pop_mat(j, 3) * pop_mat(j, 4) * dt; // add S*I*(t_{j+1} - t_j) to beta_suff
mu_suff += pop_mat(j, 4) * dt; // add I*(t_{j+1} - t_j) to mu_suff
// increment the count for the next event
if(pop_mat(j + 1, 2) == 1) {
num_inf += 1;
} else if(pop_mat(j + 1, 2) == 2) {
num_rec += 1;
}
}
// return the vector of sufficient statistics for the rate parameters
return Rcpp::NumericVector::create(num_inf, beta_suff, num_rec, mu_suff);
}")
## ------------------------------------------------------------------------
gibbs_kernel_SIR <- function(epimodel) {
# get sufficient statistics using the previously compiled getSuffStats_SIR function (above)
suff_stats <- getSuffStats_SIR(epimodel$pop_mat, epimodel$ind_final_config)
# update parameters from their univariate full conditional distributions
# Priors: beta ~ gamma(0.3, 1000)
# mu ~ gamma(1, 8)
# rho ~ beta(2, 7)
proposal <- epimodel$params # params is the vector of ALL model parameters
proposal["beta"] <- rgamma(1, 0.3 + suff_stats[1], 1000 + suff_stats[2])
proposal["mu"] <- rgamma(1, 1 + suff_stats[3], 8 + suff_stats[4])
proposal["rho"] <- rbeta(1, shape1 = 2 + sum(epimodel$obs_mat[, "I_observed"]),
shape2 = 7 + sum(epimodel$obs_mat[, "I_augmented"] - epimodel$obs_mat[, "I_observed"]))
# update array of rate matrices
epimodel <- build_new_irms(epimodel, proposal)
# update the eigen decompositions (This function is built in and computes eigen decompositions analytically)
buildEigenArray_SIR(real_eigenvals = epimodel$real_eigen_values,
imag_eigenvals = epimodel$imag_eigen_values,
eigenvecs = epimodel$eigen_vectors,
inversevecs = epimodel$inv_eigen_vectors,
irm_array = epimodel$irm,
n_real_eigs = epimodel$n_real_eigs,
initial_calc = FALSE)
# get log-likelihood of the observations under the new parameters
obs_likelihood_new <- calc_obs_likelihood(epimodel, params = proposal, log = TRUE) #### NOTE - log = TRUE
# get the new population level CTMC log-likelihood
pop_likelihood_new <- epimodel$likelihoods$pop_likelihood_cur +
suff_stats[1] * (log(proposal["beta"]) - log(epimodel$params["beta"])) +
suff_stats[3] * (log(proposal["mu"]) - log(epimodel$params["mu"])) -
suff_stats[2] * (proposal["beta"] - epimodel$params["beta"]) -
suff_stats[4] * (proposal["mu"] - epimodel$params["mu"])
# update parameters, likelihood objects, and eigen decompositions
epimodel <-
update_params(
epimodel,
params = proposal,
pop_likelihood = pop_likelihood_new,
obs_likelihood = obs_likelihood_new
)
return(epimodel)
}
## ------------------------------------------------------------------------
# grab the data that was simulated previously. No need to redefine the measurement process functions, they remain unchanged.
dat <- epimodel$dat
chain <- 1 # this was set by a batch script that ran chains 1, 2, and 3 in parallel
set.seed(52787 + chain)
# initial values for initial state parameters
init_dist <- MCMCpack::rdirichlet(1, c(9,0.5,0.1))
epimodel <- init_epimodel(popsize = 750, # population size
states = c("S", "I", "R"), # compartment names
params = c(beta = abs(rnorm(1, 0.00035, 5e-5)), # per-contact infectivity rate
mu = abs(rnorm(1, 1/7, 0.02)), # recovery rate
rho = rbeta(1, 21, 75), # binomial sampling probability
S0 = init_dist[1], I0 = init_dist[2], R0 = init_dist[3]), # initial state probabilities
rates = c("beta * I", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, -1, 1), ncol = 3, byrow = T), # flow matrix
dat = dat, # dataset
time_var = "time", # name of time variable in the dataset
meas_vars = "I", # name of measurement variable
initdist_prior = c(90, 2, 5), ### Parameters for the dirichlet prior distribution for the initial state probs
r_meas_process = r_meas_process,
d_meas_process = d_meas_process)
## ---- warning = FALSE----------------------------------------------------
epimodel <- init_settings(epimodel,
niter = 10, # this was set to 100,000 in the paper
save_params_every = 1,
save_configs_every = 2, # this was set to 250 in the paper
kernel = list(gibbs_kernel_SIR),
configs_to_redraw = 1, # this was set to 75 in the paper
analytic_eigen = "SIR", # compute eigen decompositions and matrix inverses analytically
ecctmc_method = "unif") # sample subject paths in interevent intervals via modified rejection sampling
epimodel <- fit_epimodel(epimodel, monitor = FALSE)
## ------------------------------------------------------------------------
head(epimodel$results$params)
ts.plot(epimodel$results$params[,"beta"], ylab = expression(beta))
plot(hist(epimodel$results$params[,"rho"]), main = "Binomial sampling probability")
## ---- fig.cap=""---------------------------------------------------------
plot_latent_posterior(epimodel,
states = "I", times = epimodel$obstimes, cm = "mn")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.