## ----load_packages, echo = F, include=F----------------------------------
library(BDAepimodel)
library(coda)
library(Rcpp)
## ----dynamics, echo = FALSE, results = 'asis'----------------------------
library(knitr)
tab <- t(data.frame("Effective R0" = c(14.9, 9.2, 0.1, 0),
"Incubation period" = c(210,210,90,180),
"Infectious period" = c(150,330,300,70)))
colnames(tab) = paste("Epoch", 1:4)
kable(tab, caption = "Time varying dynamics. Effective reproductive numbers are computed as the product of the per-contact infectivity rate, the mean infectious period, and the number of susceptibles at the beginning of the epoch.")
## ----SEIR_sim, warning=F, cache = F--------------------------------------
set.seed(1834)
# declare the functions for simulating from and evaluating the log-density of the measurement process
r_meas_process <- function(state, meas_vars, params){
# in our example, rho will be the name of the binomial sampling probability parameter.
# this function returns a matrix of observed counts
rbinom(n = nrow(state),
size = state[,meas_vars],
prob = params["rho"])
}
# initialize the stochastic epidemic model object
epimodel <- init_epimodel(obstimes = seq(1, 183, by = 7), # vector of observation times
popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = 0.00025, # per-contact infectivity parameter high
gamma = 1/210, # exposed compartment
mu = 1/150, # recovery rate for fast recoverers
rho = 0.95, # binomial sampling probability
S0 = 0.94,
E0 = 0.05,
I0 = 0.01,
R0 = 0), # initial state probabilities
rates = c("beta*I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> In
0, 0, -1, 1), # I -> R
ncol = 4, byrow = T),
meas_vars = c("I"),
r_meas_process = r_meas_process)
# simulate the epidemic and the dataset.
epimodel <-
simulate_epimodel(
epimodel = epimodel,
init_state = c(
S = 397,
E = 2,
I = 1,
R = 0
),
trim = TRUE
)
dat1 <- cbind(time = epimodel$dat[,"time"], I = epimodel$dat[,"I"])
true_path1 <- epimodel$pop_mat
epimodel <- init_epimodel(obstimes = seq(183, 729, by = 7), # vector of observation times
popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = 0.0001, # per-contact infectivity parameter high
gamma = 1/210, # exposed compartment
mu = 1/330, # recovery rate for fast recoverers
rho = 0.95, # binomial sampling probability
S0 = 0.94,
E0 = 0.05,
I0 = 0.01,
R0 = 0), # initial state probabilities
rates = c("beta*I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> In
0, 0, -1, 1), # I -> R
ncol = 4, byrow = T),
meas_vars = c("I"),
r_meas_process = r_meas_process)
# simulate the epidemic and the dataset.
epimodel <-
simulate_epimodel(
epimodel = epimodel,
init_state = c(true_path1[nrow(true_path1),"S"],
true_path1[nrow(true_path1),"E"],
true_path1[nrow(true_path1),"I"],
true_path1[nrow(true_path1),"R"]
),
trim = TRUE
)
dat2 <- cbind(time = epimodel$dat[,"time"], I = epimodel$dat[,"I"])
true_path2 <- epimodel$pop_mat
# initialize the stochastic epidemic model object
epimodel <- init_epimodel(obstimes = seq(729, 1163, by = 7), # vector of observation times
popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = 0.00035, # per-contact infectivity parameter high
gamma = 1/90, # exposed compartment
mu = 1/300, # recovery rate for fast recoverers
rho = 0.95, # binomial sampling probability
S0 = 0.94,
E0 = 0.05,
I0 = 0.01,
R0 = 0), # initial state probabilities
rates = c("beta*I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> In
0, 0, -1, 1), # I -> R
ncol = 4, byrow = T),
meas_vars = c("I"),
r_meas_process = r_meas_process)
# simulate the epidemic and the dataset.
epimodel <-
simulate_epimodel(
epimodel = epimodel,
init_state = c(true_path2[nrow(true_path2),"S"],
true_path2[nrow(true_path2),"E"],
true_path2[nrow(true_path2),"I"],
true_path2[nrow(true_path2),"R"]
),
trim = TRUE
)
dat3 <- cbind(time = epimodel$dat[,"time"], I = epimodel$dat[,"I"])
true_path3 <- epimodel$pop_mat
# initialize the stochastic epidemic model object
epimodel <- init_epimodel(obstimes = seq(1163, 1457, by = 7), # vector of observation times
popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = 0.0001, # per-contact infectivity parameter high
gamma = 1/180, # exposed compartment
mu = 1/70, # recovery rate for fast recoverers
rho = 0.95, # binomial sampling probability
S0 = 0.94,
E0 = 0.05,
I0 = 0.01,
R0 = 0), # initial state probabilities
rates = c("beta*I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> In
0, 0, -1, 1), # I -> R
ncol = 4, byrow = T),
meas_vars = c("I"),
r_meas_process = r_meas_process)
# simulate the epidemic and the dataset.
epimodel <-
simulate_epimodel(
epimodel = epimodel,
init_state = c(true_path3[nrow(true_path3),"S"],
true_path3[nrow(true_path3),"E"],
true_path3[nrow(true_path3),"I"],
true_path3[nrow(true_path3),"R"]
),
trim = TRUE
)
dat4 <- cbind(time = epimodel$dat[,"time"], I = epimodel$dat[,"I"])
true_path4 <- epimodel$pop_mat
dat <- rbind(dat1, dat2[-c(1),], dat3[-1,], dat4[-1,])
true_path <- rbind(true_path1[-nrow(true_path1),c(1,4:7)],
true_path2[-c(1, nrow(true_path2)), c(1,4:7)],
true_path3[-c(1, nrow(true_path3)), c(1,4:7)],
true_path4[-1, c(1,4:7)])
plot(true_path[,1], true_path[,c("I")], "l"); points(dat)
abline(v = c(183, 729, 1163), col = "red")
## ----SIR_kernel, warning = F, cache=F------------------------------------
# helper function for computing the sufficient statistics for the SIR model rate parameters
Rcpp::cppFunction("Rcpp::NumericVector getSuffStats_SIR(const Rcpp::NumericMatrix& pop_mat, const int ind_final_config) {
// initialize sufficient statistics
int num_inf = 0; // number of infection events
int num_rec = 0; // number of recovery events
double beta_suff = 0; // integrated hazard for the infectivity
double mu_suff = 0; // integrated hazard for the recovery
// initialize times
double cur_time = 0; // current time
double next_time = pop_mat(0,0); // time of the first event
double dt = 0; // time increment
// compute the sufficient statistics - loop through the pop_mat matrix until
// reaching the row for the final observation time
for(int j = 0; j < ind_final_config - 1; ++j) {
cur_time = next_time;
next_time = pop_mat(j+1, 0); // grab the time of the next event
dt = next_time - cur_time; // compute the time increment
beta_suff += pop_mat(j, 3) * pop_mat(j, 4) * dt; // add S*I*(t_{j+1} - t_j) to beta_suff
mu_suff += pop_mat(j, 4) * dt; // add I*(t_{j+1} - t_j) to mu_suff
// increment the count for the next event
if(pop_mat(j + 1, 2) == 1) {
num_inf += 1;
} else if(pop_mat(j + 1, 2) == 2) {
num_rec += 1;
}
}
// return the vector of sufficient statistics for the rate parameters
return Rcpp::NumericVector::create(num_inf, beta_suff, num_rec, mu_suff);
}")
# MCMC transition kernel for the SEIR model rate parameters and the binomial
# sampling probability. The prior distributions for the parameters are contained
# in this function.
gibbs_kernel_SIR <- function(epimodel) {
# get sufficient statistics using the previously compiled getSuffStats function (above)
suff_stats <- getSuffStats_SIR(epimodel$pop_mat, epimodel$ind_final_config)
### update parameters from their univariate full conditional distributions
## beta ~ Gamma(0.6, 10000)
## mu ~ Gamma(0.7, 100)
## rho ~ Beta(10, 1)
proposal <- epimodel$params # params is the vector of ALL model parameters
proposal["beta"] <- rgamma(1, 0.6 + suff_stats[1], 10000 + suff_stats[2])
proposal["mu"] <- rgamma(1, 0.7 + suff_stats[3], 100 + suff_stats[4])
proposal["rho"] <- rbeta(1,
shape1 = 10 + sum(epimodel$obs_mat[, "I_observed"]),
shape2 = 1 + sum(epimodel$obs_mat[, "I_augmented"] - epimodel$obs_mat[, "I_observed"]))
# update array of rate matrices
epimodel <- build_new_irms(epimodel, proposal)
# update the eigen decompositions (This function is built in)
buildEigenArray_SIR(real_eigenvals = epimodel$real_eigen_values,
imag_eigenvals = epimodel$imag_eigen_values,
eigenvecs = epimodel$eigen_vectors,
inversevecs = epimodel$inv_eigen_vectors,
irm_array = epimodel$irm,
n_real_eigs = epimodel$n_real_eigs,
initial_calc = FALSE)
# get log-likelihood of the observations under the new parameters
obs_likelihood_new <- calc_obs_likelihood(epimodel, params = proposal, log = TRUE) #### NOTE - log = TRUE
# get the new population level CTMC log-likelihood
pop_likelihood_new <- epimodel$likelihoods$pop_likelihood_cur +
suff_stats[1] * (log(proposal["beta"]) - log(epimodel$params["beta"])) +
suff_stats[3] * (log(proposal["mu"]) - log(epimodel$params["mu"])) -
suff_stats[2] * (proposal["beta"] - epimodel$params["beta"]) -
suff_stats[4] * (proposal["mu"] - epimodel$params["mu"])
# update parameters, likelihood objects, and eigen decompositions
epimodel <-
update_params(
epimodel,
params = proposal,
pop_likelihood = pop_likelihood_new,
obs_likelihood = obs_likelihood_new
)
return(epimodel)
}
### Helper function for computing the SEIR model sufficient statistics
Rcpp::cppFunction("Rcpp::NumericVector getSuffStats_SEIR(const Rcpp::NumericMatrix& pop_mat, const int ind_final_config) {
// initialize sufficient statistics
int num_exp = 0; // number of exposure events
int num_inf = 0; // number of exposed --> infectious events
int num_rec = 0; // number of recovery events
double beta_suff = 0; // integrated hazard for the exposure
double gamma_suff = 0; // integrated hazard for addition of infectives
double mu_suff = 0; // integrated hazard for the recovery
// initialize times
double cur_time = 0; // current time
double next_time = pop_mat(0,0); // time of the first event
double dt = 0; // time increment
// compute the sufficient statistics - loop through the pop_mat matrix until
// reaching the row for the final observation time
for(int j = 0; j < ind_final_config - 1; ++j) {
cur_time = next_time;
next_time = pop_mat(j+1, 0); // grab the time of the next event
dt = next_time - cur_time;
beta_suff += pop_mat(j, 3) * pop_mat(j, 5) * dt; // add S*I*(t_{j+1} - t_j) to beta_suff
gamma_suff += pop_mat(j, 4) * dt; // add E*(t_{j+1} - t_j) to gamma_suff
mu_suff += pop_mat(j, 5) * dt; // add I*(t_{j+1} - t_j) to mu_suff
if(pop_mat(j + 1, 2) == 1) {
num_exp += 1; // if the next event is an exposure, increment the number of exposures
} else if(pop_mat(j + 1, 2) == 2) {
num_inf += 1; // if the next event adds an infective, increment the number of infections
} else if(pop_mat(j + 1, 2) == 3) {
num_rec += 1; // if the next event is a recover, increment the number of recovery
}
}
// return the vector of sufficient statistics for the rate parameters
return Rcpp::NumericVector::create(num_exp, beta_suff, num_inf, gamma_suff, num_rec, mu_suff);
}")
# MCMC transition kernel for the SEIR model rate parameters and the binomial
# sampling probability. The prior distributions for the parameters are contained
# in this function.
gibbs_kernel_SEIR <- function(epimodel) {
# get sufficient statistics using the previously compiled getSuffStats function (above)
suff_stats <- getSuffStats_SEIR(epimodel$pop_mat, epimodel$ind_final_config)
### update parameters from their univariate full conditional distributions
## beta ~ Gamma(0.6, 10000)
## gamma ~ Gamma(0.5,50)
## mu ~ Gamma(0.7, 100)
## rho ~ Beta(10, 1)
proposal <- epimodel$params # params is the vector of ALL model parameters
proposal["beta"] <- rgamma(1, 0.6 + suff_stats[1], 10000 + suff_stats[2])
proposal["gamma"] <- rgamma(1, 0.5 + suff_stats[3], 50 + suff_stats[4])
proposal["mu"] <- rgamma(1, 0.7 + suff_stats[5], 100 + suff_stats[6])
proposal["rho"] <- rbeta(1,
shape1 = 10 + sum(epimodel$obs_mat[,"I_observed"]),
shape2 = 1 + sum(epimodel$obs_mat[,"I_augmented"]- epimodel$obs_mat[,"I_observed"]))
# update array of rate matrices
epimodel <- build_new_irms(epimodel, proposal)
# update the eigen decompositions
buildEigenArray_SEIR(real_eigenvals = epimodel$real_eigen_values,
imag_eigenvals = epimodel$imag_eigen_values,
eigenvecs = epimodel$eigen_vectors,
inversevecs = epimodel$inv_eigen_vectors,
irm_array = epimodel$irm,
n_real_eigs = epimodel$n_real_eigs,
initial_calc = FALSE)
# get log-likelihoods under the new parameters
pop_likelihood_new <- calc_pop_likelihood(epimodel, log = TRUE) #### NOTE - log = TRUE
obs_likelihood_new <- calc_obs_likelihood(epimodel, params = proposal, log = TRUE) #### NOTE - log = TRUE
# update parameters, likelihood objects, and eigen decompositions
epimodel <- update_params(epimodel, params = proposal, pop_likelihood = pop_likelihood_new, obs_likelihood = obs_likelihood_new)
return(epimodel)
}
## ----SIR_inference, warning=F, cache=F, messages = F---------------------
chain <- 1 # this was set by a batch script that ran chains 1, 2, and 3 in parallel
# generate the measurement process
d_meas_process <- function(state, meas_vars, params, log = TRUE) {
# note that the names of the measurement variables are endowed with suffixes "_observed" and "_augmented". This is required.
# we will declare the names of the measurement variables shortly.
dbinom(x = state[, "I_observed"],
size = state[, "I_augmented"],
prob = params["rho"], log = log)
}
# re-initialize the chain
init_dist_SIR <- normalize(c(0.99, 0.004, 0.0001))
epimodel_SIR <- init_epimodel(popsize = 400, # population size
states = c("S", "I", "R"), # compartment names
params = c(beta = abs(rnorm(1, 0.00005, 1e-5)), # infectivity rate
mu = abs(rnorm(1, 0.002, 0.0001)), # recovery rate
rho = rbeta(1, 10, 1), # binomial sampling prob
S0 = init_dist_SIR[1], I0 = init_dist_SIR[2], R0 = init_dist_SIR[3]),
rates = c("beta * I", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0,
0, -1, 1), ncol = 3, byrow = T), # flow matrix
dat = dat, # dataset
time_var = "time", # name of time variable in the dataset
meas_vars = "I", # name of measurement var in the dataset
initdist_prior = c(90, 0.5, 0.01), ### Parameters for the dirichlet prior distribution
d_meas_process = d_meas_process)
epimodel_SIR <- init_settings(epimodel_SIR,
niter = 10, # this was set to 100000 in the paper
save_params_every = 1,
save_configs_every = 2, # this was set to 250 for the chains run in the paper
kernel = list(gibbs_kernel_SIR),
configs_to_redraw = 2, # set to 150 for the paper
analytic_eigen = "SIR",
ecctmc_method = "unif",
seed = 52787 + chain)
# Fit the epimodel --------------------------------------------------------
epimodel_SIR <- fit_epimodel(epimodel_SIR, monitor = TRUE)
## ----SEIR_sim2, include=FALSE, warning=F, cache = F----------------------
set.seed(1834)
# declare the functions for simulating from and evaluating the log-density of the measurement process
r_meas_process <- function(state, meas_vars, params){
# in our example, rho will be the name of the binomial sampling probability parameter.
# this function returns a matrix of observed counts
rbinom(n = nrow(state),
size = state[,meas_vars],
prob = params["rho"])
}
# initialize the stochastic epidemic model object
epimodel <- init_epimodel(obstimes = seq(1, 183, by = 7), # vector of observation times
popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = 0.00025, # per-contact infectivity parameter high
gamma = 1/210, # exposed compartment
mu = 1/150, # recovery rate for fast recoverers
rho = 0.95, # binomial sampling probability
S0 = 0.94,
E0 = 0.05,
I0 = 0.01,
R0 = 0), # initial state probabilities
rates = c("beta*I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> In
0, 0, -1, 1), # I -> R
ncol = 4, byrow = T),
meas_vars = c("I"),
r_meas_process = r_meas_process)
# simulate the epidemic and the dataset.
epimodel <-
simulate_epimodel(
epimodel = epimodel,
init_state = c(
S = 397,
E = 2,
I = 1,
R = 0
),
trim = TRUE
)
dat1 <- cbind(time = epimodel$dat[,"time"], I = epimodel$dat[,"I"])
true_path1 <- epimodel$pop_mat
epimodel <- init_epimodel(obstimes = seq(183, 729, by = 7), # vector of observation times
popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = 0.0001, # per-contact infectivity parameter high
gamma = 1/210, # exposed compartment
mu = 1/330, # recovery rate for fast recoverers
rho = 0.95, # binomial sampling probability
S0 = 0.94,
E0 = 0.05,
I0 = 0.01,
R0 = 0), # initial state probabilities
rates = c("beta*I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> In
0, 0, -1, 1), # I -> R
ncol = 4, byrow = T),
meas_vars = c("I"),
r_meas_process = r_meas_process)
# simulate the epidemic and the dataset.
epimodel <-
simulate_epimodel(
epimodel = epimodel,
init_state = c(true_path1[nrow(true_path1),"S"],
true_path1[nrow(true_path1),"E"],
true_path1[nrow(true_path1),"I"],
true_path1[nrow(true_path1),"R"]
),
trim = TRUE
)
dat2 <- cbind(time = epimodel$dat[,"time"], I = epimodel$dat[,"I"])
true_path2 <- epimodel$pop_mat
# initialize the stochastic epidemic model object
epimodel <- init_epimodel(obstimes = seq(729, 1163, by = 7), # vector of observation times
popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = 0.00035, # per-contact infectivity parameter high
gamma = 1/90, # exposed compartment
mu = 1/300, # recovery rate for fast recoverers
rho = 0.95, # binomial sampling probability
S0 = 0.94,
E0 = 0.05,
I0 = 0.01,
R0 = 0), # initial state probabilities
rates = c("beta*I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> In
0, 0, -1, 1), # I -> R
ncol = 4, byrow = T),
meas_vars = c("I"),
r_meas_process = r_meas_process)
# simulate the epidemic and the dataset.
epimodel <-
simulate_epimodel(
epimodel = epimodel,
init_state = c(true_path2[nrow(true_path2),"S"],
true_path2[nrow(true_path2),"E"],
true_path2[nrow(true_path2),"I"],
true_path2[nrow(true_path2),"R"]
),
trim = TRUE
)
dat3 <- cbind(time = epimodel$dat[,"time"], I = epimodel$dat[,"I"])
true_path3 <- epimodel$pop_mat
# initialize the stochastic epidemic model object
epimodel <- init_epimodel(obstimes = seq(1163, 1457, by = 7), # vector of observation times
popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = 0.0001, # per-contact infectivity parameter high
gamma = 1/180, # exposed compartment
mu = 1/70, # recovery rate for fast recoverers
rho = 0.95, # binomial sampling probability
S0 = 0.94,
E0 = 0.05,
I0 = 0.01,
R0 = 0), # initial state probabilities
rates = c("beta*I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> In
0, 0, -1, 1), # I -> R
ncol = 4, byrow = T),
meas_vars = c("I"),
r_meas_process = r_meas_process)
# simulate the epidemic and the dataset.
epimodel <-
simulate_epimodel(
epimodel = epimodel,
init_state = c(true_path3[nrow(true_path3),"S"],
true_path3[nrow(true_path3),"E"],
true_path3[nrow(true_path3),"I"],
true_path3[nrow(true_path3),"R"]
),
trim = TRUE
)
dat4 <- cbind(time = epimodel$dat[,"time"], I = epimodel$dat[,"I"])
true_path4 <- epimodel$pop_mat
dat <- rbind(dat1, dat2[-c(1),], dat3[-1,], dat4[-1,])
true_path <- rbind(true_path1[-nrow(true_path1),c(1,4:7)],
true_path2[-c(1, nrow(true_path2)), c(1,4:7)],
true_path3[-c(1, nrow(true_path3)), c(1,4:7)],
true_path4[-1, c(1,4:7)])
## ----SEIR_inference, warning=F, cache=F, messages = F--------------------
chain <- 1 # this was set by a batch script that ran chains 1, 2, and 3 in parallel
# generate the measurement process
d_meas_process <- function(state, meas_vars, params, log = TRUE) {
# note that the names of the measurement variables are endowed with suffixes "_observed" and "_augmented". This is required.
# we will declare the names of the measurement variables shortly.
dbinom(x = state[, "I_observed"],
size = state[, "I_augmented"],
prob = params["rho"], log = log)
}
# re-initialize the chain
init_dist_SEIR <- normalize(c(90, 0.5, 0.5, 0.01))
epimodel_SEIR <- init_epimodel(popsize = 400, # population size
states = c("S", "E", "I", "R"), # compartment names
params = c(beta = abs(rnorm(1, 0.00008, 1e-6)), # infectivity rate
gamma = abs(rnorm(1, 0.008, 1e-3)),
mu = abs(rnorm(1, 0.0012, 0.001)), # recovery rate
rho = rbeta(1, 10, 1), # binomial sampling prob
S0 = init_dist_SEIR[1], E0 = init_dist_SEIR[2], I0 = init_dist_SEIR[3], R0 = init_dist_SEIR[4]),
rates = c("beta * I", "gamma", "mu"), # unlumped transition rates
flow = matrix(c(-1, 1, 0, 0, # S -> E
0, -1, 1, 0, # E -> I
0, 0, -1, 1),# I -> R
ncol = 4, byrow = T), # flow matrix
dat = dat, # dataset
time_var = "time", # name of time variable in the dataset
meas_vars = "I", # name of measurement var in the dataset
initdist_prior = c(90, 0.5, 0.5, 0.01), ### Parameters for the dirichlet prior distribution
d_meas_process = d_meas_process,
r_meas_process = r_meas_process)
epimodel_SEIR <- init_settings(epimodel_SEIR,
niter = 10, # this was set to 100000 in the paper
save_params_every = 1,
save_configs_every = 2, # this was set to 250 for the chains run in the paper
kernel = list(gibbs_kernel_SEIR),
configs_to_redraw = 2, # set to 150 for the paper
analytic_eigen = "SEIR",
ecctmc_method = "unif",
seed = 52787 + chain)
# Fit the epimodel --------------------------------------------------------
epimodel_SEIR <- fit_epimodel(epimodel_SEIR, monitor = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.