ccr.ROC_Curve | R Documentation |
This functions computes Specificity/Sensitivity (or TNR/TPR, or ROC) curve, area under the ROC curve and (optionally) Recall (i.e. TPR) at fixed false discovery rate (computed as 1 - Precision (or Positive Predicted Value)) and corresponding log fold change threshold) when classifying reference sets of genes (or sgRNAs) based on their depletion log fold-changes
ccr.ROC_Curve(FCsprofile,
positives,
negatives,
display = TRUE,
FDRth = NULL,
expName = NULL)
FCsprofile |
A numerical vector containing gene average depletion log fold changes (or sgRNAs' depletion log fold changes) with names corresponding to HGNC symbols (or sgRNAs' identifiers). |
positives |
A vector of strings containing a reference set of positive cases: HGNC symbols of essential genes or identifiers of their targeting sgRNAs. This must be a subset of |
negatives |
A vector of strings containing a reference set of negative cases: HGNC symbols of essential genes or identifiers of their targeting sgRNAs. This must be a subset of |
display |
A logical parameter specifying if a plot containing the computed ROC curve with ROC indicators should be plotted (default = TRUE). |
FDRth |
If different from NULL, will be a numerical value >=0 and <=1 specifying the false discovery rate threshold at which
fixed recall will be computed. In this case, if the |
expName |
If different from NULL and |
A list containint three numerical variable AUC
, Recall
, and sigthreshold
indicating the area under ROC curve and (if FDRth
is not NULL) the recall at the specifying false discovery rate and the corresponding log fold change threshold (both equal to NULL, if FDRth
is NULL), respectively.
Francesco Iorio (francesco.iorio@fht.org)
BAGEL_essential
, BAGEL_nonEssential
,
ccr.genes2sgRNAs
, ccr.VisDepAndSig
,
ccr.PrRc_Curve
## Not run:
## loading corrected sgRNAs log fold-changes and segment annotations for an example
## cell line (EPLC-272H)
data(EPLC.272HcorrectedFCs)
## loading reference sets of essential and non-essential genes
data(BAGEL_essential)
data(BAGEL_nonEssential)
## loading library annotation
data(KY_Library_v1.0)
## storing sgRNA log fold-changes in a named vector
FCs<-EPLC.272HcorrectedFCs$corrected_logFCs$avgFC
names(FCs)<-rownames(EPLC.272HcorrectedFCs$corrected_logFCs)
## deriving sgRNAs targeting essential and non-essential genes (respectively)
BAGEL_essential_sgRNAs<-ccr.genes2sgRNAs(KY_Library_v1.0,BAGEL_essential)
BAGEL_nonEssential_sgRNAs<-ccr.genes2sgRNAs(KY_Library_v1.0,BAGEL_nonEssential)
## computing classification performances at the sgRNA level
ccr.ROC_Curve(FCs,BAGEL_essential_sgRNAs,BAGEL_nonEssential_sgRNAs)
## computing gene level log fold-changes
geneFCs<-ccr.geneMeanFCs(FCs,KY_Library_v1.0)
## computing classification performances at the sgRNA level, with Recall at 5% FDR
ccr.ROC_Curve(geneFCs,BAGEL_essential,BAGEL_nonEssential,FDRth = 0.05)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.