ccr.perf_distributions | R Documentation |
This function creates distributions density plots of sgRNA log fold changes for defined sets of targeted genes prior/post CRISPRcleanR correction.
ccr.perf_distributions(cellLine, correctedFCs,
GDSC.geneLevCNA = NULL,
CCLE.gisticCNA = NULL,
RNAseq.fpkms = NULL,
minCNs = c(8, 10),
libraryAnnotation,
GDSC.CL_annotation=NULL)
cellLine |
A string specifying the name of a cell line (or a COSMIC identifier [1]); |
correctedFCs |
sgRNAs log fold changes corrected for gene independent responses to CRISPR-Cas9 targeting, generated with the function |
GDSC.geneLevCNA |
Genome-wide copy number data with the same format of |
CCLE.gisticCNA |
Genome-wide Gistic [3] scores quantifying copy number status across cell lines with the same format of |
RNAseq.fpkms |
Genome-wide substitute reads with fragments per kilobase of exon per million reads mapped (FPKM) across cell lines. These can be derived from a comprehensive collection of RNAseq profiles described in [4]. The format must be the same of the |
minCNs |
A numerical vector with two entries specifying the minimal copy number for a gene in order to be considered amplified
based on the data in |
libraryAnnotation |
The sgRNA library annotations formatted as specified in the reference manual entry of the |
GDSC.CL_annotation |
Cell lines annotation dataframe with the same structure of the |
This function generates 4 sets of plots. They contains log fold change distributions density plots prior/post CRISPRcleanR correction respectively for
(i) Copy number amplified genes according to the data in GDSC.geneLevCNA
based on the two threshold values specified in minCNs
;
(ii) Copy number amplified genes according to the data in CCLE.gisticCNA
(gistic score = +2);
(iii) Copy number amplified non expressed genes according to the data in GDSC.geneLevCNA
based on the two threshold values specified in minCNs
, and the data in RNAseq.fpkms
(FPKM < 0.05);
(iv) reference sets of core fitness essential genes from MSigDB [5] (included in the builtin vectors EssGenes.DNA_REPLICATION_cons
, EssGenes.KEGG_rna_polymerase
,
EssGenes.PROTEASOME_cons
, EssGenes.ribosomalProteins
,
EssGenes.SPLICEOSOME_cons
, and reference core-fitness-essential and non-essential genes assembled from multiple RNAi studies used as classification template by the BAGEL algorithm to call gene depletion significance [6]
(BAGEL_essential
, BAGEL_nonEssential
).
Francesco Iorio (francesco.iorio@fht.org)
[a] ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-6.0/Gene_level_CN.xlsx.
[1] Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high-resolution Nucleic Acids Research, Volume 45, Issue D1, 4 January 2017, Pages D777-D783.
[2] Iorio, F., Behan, F. M., Goncalves, E., Beaver, C., Ansari, R., Pooley, R., et al. (n.d.). Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting.
http://doi.org/10.1101/228189
[3] Mermel CH, Schumacher SE, Hill B, et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41. doi: 10.1186/gb-2011-12-4-r41.
[4] Garcia-Alonso L, Iorio F, Matchan A, et al. Transcription factor activities enhance markers of drug response in cancer doi: https://doi.org/10.1101/129478
[5] Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545-15550. http://doi.org/10.1073/pnas.0506580102
[6] BAGEL: a computational framework for identifying essential genes from pooled library screens. Traver Hart and Jason Moffat. BMC Bioinformatics, 2016 vol. 17 p. 164.
KY_Library_v1.0
, ccr.GWclean
,
GDSC.geneLevCNA
, CCLE.gisticCNA
, RNAseq.fpkms
,
EssGenes.DNA_REPLICATION_cons
, EssGenes.KEGG_rna_polymerase
, EssGenes.PROTEASOME_cons
, EssGenes.ribosomalProteins
, EssGenes.SPLICEOSOME_cons
BAGEL_essential
, BAGEL_nonEssential
## Not run:
## loading corrected sgRNAs log fold-changes and segment annotations for an example
## cell line (HT-29)
data(HT.29correctedFCs)
## loading library annotation
data(KY_Library_v1.0)
## inpecting sgRNA log fold change distributions prior/post CRISPRcleanR correction
ccr.perf_distributions('HT-29',HT.29correctedFCs$corrected_logFCs,
libraryAnnotation = KY_Library_v1.0)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.