#' Calculate pathway-specific Student's \eqn{t}-scores from a null distribution
#' or the true distribution for supervised PCA
#'
#' @description If we sample from the null, distribution, first parametrically
#' resample the response vector before model analysis (f we calculate Student
#' t statistics from the true distribution instead, the response matrix is
#' untouched). Then extract principal components (PCs) from the gene pathway,
#' and return the test statistics associated with the first \code{numPCs}
#' principal components at a set of threshold values based on the values of
#' the parametrically resampled response (for the null distribution) or the
#' response itself (for the true distribution).
#'
#' @param pathway_vec A character vector of the measured -Omes in the chosen
#' gene pathway. These should match a subset of the rownames of the gene
#' array.
#' @param geneArray_df A "tall" pathway data frame (\eqn{p \times N}). Each
#' subject or tissue sample is a column, and the rows are the -Ome
#' measurements for that sample.
#' @param response_mat A response matrix corresponding to \code{responseType}.
#' For \code{"regression"} and \code{"categorical"}, this will be an
#' \eqn{N \times 1} factor matrix of response values. For \code{"survival"},
#' this will be an \eqn{N \times 2} matrix with event times in the first
#' column and observed event indicator in the second. You can create a factor
#' matrix of a factor \code{a} with the command \code{dim(a) <- c(k, 1)},
#' where \code{k = length(a)}.
#' @param control Should the responses be parametrically resampled to generate
#' a control distribution? Defaults to \code{FALSE}.
#' @param responseType A character string. Options are \code{"survival"},
#' \code{"regression"}, and \code{"categorical"}.
#' @param n.threshold The number of bins into which to split the feature scores
#' in the \code{fit} object returned internally by the
#' \code{\link{superpc.train}} function.
#' @param numPCs The number of PCs to extract from the pathway.
#' @param min.features What is the smallest number of genes allowed in each
#' pathway? This argument must be kept constant across all calls to this
#' function which use the same pathway list. Defaults to 3.
#'
#' @return If \code{control = TRUE}, a matrix with \code{numPCs} rows and
#' \code{n.threshold} columns. The matrix values are model
#' \eqn{t}-statisics for each PC included (rows) at each threshold level
#' (columns).
#'
#' If \code{control = TRUE}, the same matrix as above is contained as the
#' \code{tscor} element of a list (the first element). The other list
#' elements are \code{PCs_mat} (the matrix of PCs) and \code{loadings} (the
#' matrix of -Ome loadings corresponding to the PCs).
#'
#' @details This is a wrapper function to call \code{\link{superpc.train}}
#' and \code{\link{superpc.st}}. This wrapper is designed to facilitate
#' apply calls (in parallel or serially) of these two functions over a list
#' of gene pathways. When \code{numPCs} is equal to 1, we recommend using a
#' simplify-style apply variant, such as \code{sapply} (shown in
#' \code{\link[base]{lapply}}) or \code{parSapply} (shown in
#' \code{\link[parallel]{clusterApply}}), then transposing the resulting
#' matrix.
#'
#' If \code{control = TRUE}, the \code{\link{RandomControlSample}} suite of
#' functions first parametrically bootstrapps the response. This control
#' response will be used to contrstruct a null distribution against which to
#' compare the results calculated with the original response values.
#'
#'
#' @seealso \code{\link{pathway_tScores}}; \code{\link{pathway_tControl}};
#' \code{\link{RandomControlSample}}; \code{\link{superpc.train}};
#' \code{\link{superpc.st}}
#'
#' @keywords internal
#'
#'
#' @examples
#' # DO NOT CALL THIS FUNCTION DIRECTLY.
#' # Use SuperPCA_pVals() instead
#'
#' \dontrun{
#' data("colon_pathwayCollection")
#' data("colonSurv_df")
#'
#' colon_OmicsSurv <- CreateOmics(
#' assayData_df = colonSurv_df[, -(2:3)],
#' pathwayCollection_ls = colon_pathwayCollection,
#' response = colonSurv_df[, 1:3],
#' respType = "surv"
#' )
#'
#' asthmaGenes_char <-
#' getTrimPathwayCollection(colon_OmicsSurv)[["KEGG_ASTHMA"]]$IDs
#' resp_mat <- matrix(
#' c(getEventTime(colon_OmicsSurv), getEvent(colon_OmicsSurv)),
#' ncol = 2
#' )
#'
#' PathwaytValues(
#' pathway_vec = asthmaGenes_char,
#' geneArray_df = t(getAssay(colon_OmicsSurv)),
#' response_mat = resp_mat,
#' responseType = "survival"
#' )
#'
#' PathwaytValues(
#' pathway_vec = asthmaGenes_char,
#' geneArray_df = t(getAssay(colon_OmicsSurv)),
#' response_mat = resp_mat,
#' responseType = "survival",
#' control = TRUE
#' )
#' }
#'
PathwaytValues <- function(pathway_vec,
geneArray_df,
response_mat,
responseType = c("survival",
"regression",
"categorical"),
control = FALSE,
n.threshold = 20,
numPCs = 1,
min.features = 3){
# browser()
if(!control){
sampResp <- switch(
responseType,
survival = {
list(response_vec = response_mat[, 1], event_vec = response_mat[, 2])
},
regression = { response_mat[, 1] },
categorical = { response_mat }
)
} else {
sampResp <- SampleResponses(
response_vec = response_mat[, 1],
event_vec = response_mat[, 2],
respType = responseType,
parametric = TRUE
)
}
data_ls <- switch(responseType,
survival = {
list(
x = geneArray_df[pathway_vec, ],
y = sampResp$response_vec,
censoring.status = sampResp$event_vec,
featurenames = pathway_vec
)
},
regression = {
list(
x = geneArray_df[pathway_vec, ],
y = sampResp,
featurenames = pathway_vec
)
},
categorical = {
list(
x = geneArray_df[pathway_vec, ],
y = sampResp,
featurenames = pathway_vec
)
}
)
train <- superpc.train(data_ls, type = responseType)
st.obj <- superpc.st(
fit = train,
data = data_ls,
n.PCs = numPCs,
min.features = min.features,
n.threshold = n.threshold
)
if(!control){
list(
tscor = st.obj$tscor,
PCs_mat = st.obj$PCs_mat,
loadings = st.obj$Loadings_mat
)
} else {
st.obj$tscor
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.