R/siglasso_internal.R

Defines functions siglasso_internal

Documented in siglasso_internal

#' Internal function for sigLASSO
#' 
#' Internal function that assigns weights of signatures to a given sample
#' 
#'
#' @param spectrum The mutation spectrum of the target sample
#' @param sig The signature matrix
#' @param prior The weights of penalties given as prior
#' @param adaptive Should it do adpative LASSO?
#' @param elastic_net Should it do elastic net?
#' @param gamma Hyperparameter for adpative LASSO
#' @param alpha_min The minimum alpha
#' @param iter_max The maximum number of iterations
#' @param sd_multiplier The tolerance of SEs in lambda searching
#' @param conf A confidence factor for linear fitting

siglasso_internal <- function(spectrum, sig, prior, adaptive, elastic_net, 
                              gamma, alpha_min, iter_max, sd_multiplier, conf) {
    p_star_hat <- data.matrix(spectrum / sum(spectrum))
    p_star_hat_now <- p_star_hat
    p_hat <- rep(0, nrow(sig))
    l_last <- -Inf
    iter_number <- 0
    predictor <- data.matrix(sig)
    penalty <- rep(1, ncol(sig))
    
    las_pm <- estimate_lasso_parameters(data.matrix(sig), p_star_hat, gamma, 
                                        penalty, prior, adaptive = T, 
                                        sd_multiplier, elastic_net)
    predictor <- las_pm$predictor
    lambda_min1se <- las_pm$lambda_min1se
    penalty <- las_pm$penalty
    lambda_seq <- las_pm$lambda_seq
    ols_fit <- las_pm$ols_fit
    alpha_min1se <- las_pm$alpha_min1se
    
    while (TRUE) {
        iter_number <- iter_number + 1
        
        if (is.vector(predictor) || ncol(predictor) < 2) {
            coef_hat <- rep(0, ncol(sig))
            coef_hat[ols_fit$x > 0] <- coef(lm(predictor ~ p_star_hat - 1))
            lambda_min1se <- 0
            K <- length(predictor)
        } else {
            K <- nrow(predictor)
            fit <- glmnet(predictor, p_star_hat, alpha = alpha_min1se, 
                          intercept = F, lower.limit = 0, 
                          lambda = lambda_seq, standardize = T, 
                          penalty.factor = penalty)
            if (adaptive) {
                coef_hat <- rep(0, ncol(sig))
                coef_hat[ols_fit$x > 0] <- coef(fit, s = lambda_min1se, 
                                                x = predictor, y = p_star_hat, 
                                                penalty.factor = penalty)[-1, ]
            } else {
                coef_hat <- coef(fit, s = lambda_min1se, x = predictor, 
                                  y = p_star_hat, penalty.factor = penalty)[-1,]
            }
        }
        
        p_hat <- sig %*% coef_hat
        
        alpha <- max(1 / sum((p_hat - p_star_hat)^2) * 
                      (K - length(which(coef_hat > 0))) * conf, alpha_min)
        f <- function(lambda) {
            sum(p_hat) + (K / alpha) * lambda - 2 + sum(sqrt((p_hat + 
                  lambda / alpha)^2 + 4 * spectrum / alpha))
        }
        
        low_lim <- -sum(spectrum)
        uniroot_iter_number <- 0
        
        while (f(low_lim) > 0) {
            uniroot_iter_number <- uniroot_iter_number + 1
            if (uniroot_iter_number > 20) {
                stop("uniroot cannot find the root!")
            }
            low_lim <- low_lim * 2
        }
        lambda_hat <- uniroot(f, c(low_lim, alpha / K))$root
        p_star_hat <- (p_hat + lambda_hat / alpha + sqrt((p_hat + 
                        lambda_hat / alpha)^2 + 4 * spectrum / alpha)) / 2
        l <- sum(spectrum * log(p_star_hat), na.rm = T) - alpha * 
            sum((p_star_hat - p_hat)^2) - lambda_min1se * sum(coef_hat) * alpha
        if (sum((p_star_hat_now - p_star_hat)^2) < 1e-08 || 
                iter_number > iter_max) { break }
        else if (sum((p_star_hat_now - p_star_hat)^2) > 0.001) {
            # reestimate the lasso parameter when p_star drifts significantly
            las_pm <- estimate_lasso_parameters(data.matrix(sig), p_star_hat, 
                                          gamma, penalty, prior, adaptive = T, 
                                          sd_multiplier, elastic_net)
            predictor <- las_pm$predictor
            lambda_min1se <- las_pm$lambda_min1se
            alpha_min1se <- las_pm$alpha_min1se
            penalty <- las_pm$penalty
            lambda_seq <- las_pm$lambda_seq
            ols_fit <- las_pm$ols_fit
        }
        l_last <- l
        p_star_hat_now <- p_star_hat
    }
    names(coef_hat) <- colnames(sig)
	# normalize if the sum > 1 
	if (sum(coef_hat) > 1) {
		coef_hat = coef_hat / sum(coef_hat)
	}
    return(coef_hat)
}
gersteinlab/siglasso documentation built on Jan. 11, 2020, 3:41 a.m.