R/PLSR_from_file_and_predict_second_dataset.R

Defines functions PLSR_from_file_and_predict_second_dataset

Documented in PLSR_from_file_and_predict_second_dataset

#' Partial Least Squares and predict second dataset
#'
#' Builds PLS model from training dataset and predicts second dataset
#' Writes out predicted.scores of the second dataset
#' Plots original PLS, projected samples only, and projected samples ontop of original PLS
#'
#' @param file file for X matirx
#' @param sample.names Vector of sample names in X matrix
#' @param sample.type vector of sample groups
#' @param y.response numeric vector of response values in same order as samples
#' @param comps number of components to compute
#' @param scale default=T
#' @param labels label the plot, default = T
#' @param comp.x,comp.y comps to display
#' @param title title of the plot
#' @param fread default=F, use fread for large input files
#'
#' @param file2 file for test data matrix
#' @param sample.names2 Vector of sample names in 2nd dataset, if needed
#' @param sample.type2 Vector of sample types in 2nd dataset, if needed
#' @param train_string string to insert in file name of predicted scores
#'
#' @export
#'

#sample input
# file = "filename.txt"
# sample.names = info$sample
# sample.type = info$type
# y.response = ifelse(info$type=="TYPE", 1, 0)
# scale = F
# labels = T
# comps = 3
# comp.x = "comp.1"
# comp.y = "comp.2"
# title = "Title"
# #file2 = "filename2.txt"
# sample.names2 = info$sample
# sample.type2 = info$type
# train_string = "tofile1"
PLSR_from_file_and_predict_second_dataset = function(file, file2, sample.names, sample.type, y.response, sample.names2=NULL, sample.type2=NULL, train_string,
                                                     title = "PLSR", comp.x = "comp1", comp.y = "comp2",comps = 5, scale = F, labels = F, fread = FALSE){

	require(mixOmics); require(ggplot2)

  if(fread==T){
    data = fread(file)
    data = data[rowSums((data[, -1,with=F] == 0)) < ncol(data[-1]), ] #remove genes with no variance
    data2 = fread(file2)
    #data2 = data2[rowSums((data2[, -1] == 0)) < ncol(data2[-1]), ] #remove genes with no variance

    data = data[!duplicated(data[,1,with=F]), ]
    data2 = data2[!duplicated(data2[,1,with=F]), ]

    common.genes = intersect_all(data[,1,with=F], data2[,1,with=F])
    data = data[data[,1,with=F] %in% common.genes, ]
    data2 = data2[data2[,1,with=F] %in% common.genes, ]
    data = data[order(data[,1,with=F]), ]
    data2 = data2[order(data2[,1,with=F]), ]

    rownames(data) = make.names(data[, 1], unique=TRUE)
    t.data = data.frame(t(data[, -1,with=F]))
    y.response = (data.frame(y.response)[match(rownames(t.data), as.character(sample.names)), ])
    y.response = as.matrix(y.response)
  }
  else{
  data = read.table(file, sep='\t',header=T,stringsAsFactors=FALSE, quote = "")
  data = data[rowSums((data[, -1] == 0)) < ncol(data[-1]), ] #remove genes with no variance
  data2 = read.table(file2, sep='\t',header=T,stringsAsFactors=FALSE, quote = "")
  #data2 = data2[rowSums((data2[, -1] == 0)) < ncol(data2[-1]), ] #remove genes with no variance

  data = data[!duplicated(data[,1]), ]
  data2 = data2[!duplicated(data2[,1]), ]

  common.genes = intersect_all(data[,1], data2[,1])
  data = data[data[,1] %in% common.genes, ]
  data2 = data2[data2[,1] %in% common.genes, ]
  data = data[order(data[,1]), ]
  data2 = data2[order(data2[,1]), ]

  rownames(data) = make.names(data[, 1], unique=TRUE)
  t.data = data.frame(t(data[, -1]))
  y.response = (data.frame(y.response)[match(rownames(t.data), as.character(sample.names)), ])
  y.response = as.matrix(y.response)
  }

  pls.fit = pls(X = t.data, Y = y.response, scale = scale, ncomp = comps)

  x.variates = data.frame(pls.fit$variates$X)

  #plot the first
  x.variates$type = sample.type[match(rownames(x.variates), sample.names)]
  pc.pred = ggplot(data=x.variates, aes_string(x = comp.x, y = comp.y)) + geom_point(size = I(2), aes(color = factor(type))) +
    theme(legend.position = "right", plot.title = element_text(size = 30), legend.text = element_text(size = 22),
          legend.title = element_text(size = 20), axis.title = element_text(size = 30), legend.background = element_rect(),
          axis.text.x = element_text(margin = margin(b = -2)), axis.text.y = element_text(margin = margin(l = -14))) +
    labs(title = title) + theme_bw()+
    if (labels == TRUE) {
      geom_text(data = x.variates, mapping = aes(label =(rownames(x.variates))), check_overlap = TRUE, size = 3)
    }
  pc.pred

  #project second dataset
  rownames(data2) = make.names(data2[, 1], unique=TRUE)
  t.data2 = data.frame(t(data2[,-1]))


  test.predict <- predict(pls.fit, t.data2)
  prediction <- as.data.frame(test.predict$variates)
  colnames(prediction) <- colnames(x.variates)[-ncol(x.variates)]

  write.table(cbind(Sample = rownames(prediction),(prediction)), paste0(gsub(".txt", "", file2),"_", train_string, "_PLSR_predicted.scores.txt"), sep = "\t", row.names = F, quote = F)




  prediction$type = sample.type2[match(rownames(prediction), sample.names2)]
  #plot the prediction
  pc.pred <- ggplot(prediction, aes_string(x = comp.x, y = comp.y)) + geom_point(size = I(2), aes(color = factor(type))) +
    theme(legend.position = "right", plot.title = element_text(size = 30), legend.text = element_text(size = 22),
          legend.title = element_text(size = 20), axis.title = element_text(size = 30), legend.background = element_rect(),
          axis.text.x = element_text(margin = margin(b = -2)), axis.text.y = element_text(margin = margin(l = -14))) +
    guides(color=guide_legend(title="Type"))+
    labs(title = title) + theme_bw() +
    if (labels == TRUE) {
      geom_text(data = prediction, mapping = aes(label =(rownames(prediction))), check_overlap = TRUE, size = 3)
    }
  pc.pred

  pc.pred = pc.pred + geom_point(data=x.variates, aes_string(x = comp.x, y = comp.y)) + geom_point(size = I(2), aes(color = factor(type))) +
    theme(legend.position = "right", plot.title = element_text(size = 30), legend.text = element_text(size = 22),
          legend.title = element_text(size = 20), axis.title = element_text(size = 30), legend.background = element_rect(),
          axis.text.x = element_text(margin = margin(b = -2)), axis.text.y = element_text(margin = margin(l = -14))) +
    labs(title = title) + theme_bw()

  pc.pred



}
graeberlab-ucla/glab.library documentation built on Oct. 28, 2024, 10:48 a.m.