#' Neighborhood selection method with cross-validation to select the tuning parameter.
#' @description Apply 5-fold cross-validation to select tuning parameter.
#' @import gss
#' @export
#' @param data Data frame
#' @param formula Symbolic description of the model to be fit.
#' @param response Formula listing response variables.
#' @param type List specifying the type of spline for each variable.
#' @param alpha Parameter defining cross-validation score for smoothing parameter selection.
#' @param subset Optional vector specifying a subset of observations to be used in the fitting process.
#' @param na.action Function which indicates what should happen when the data contain NAs.
#' @param rho Method to construct rho function for neighborhood selection method.
#' @param ydomain Data frame specifying marginal support of conditional density in the neighborhood selection method.
#' @param yquad Quadrature for calculating integral on Y domain in the neighborhood selection method. Mandatory if response variables other than factors or numerical vectors are involved.
#' @param prec Precision requirement for internal iterations.
#' @param maxiter Maximum number of iterations allowed for internal iterations.
#' @param skip.iter Flag indicating whether to use initial values of theta and skip theta iteration in the neighborhood selection method.
#' @param M0 Upper bound
#' @param M_list List of values for tuning parameter selection
#' @param maxiteration Max number of iteration
#' @param tolerance Threshold for convergence
#' @param id.basis Index of observations to be used as "knots."
#' @param theta2 Parameters for edge selection.
#' @param w2 Optional vector to specify weights for two-way interactions
#' @param n Number of observation
#' @param p Dimension of data frame
cond_select <- function(data, formula, response, type = NULL, alpha, subset, na.action, rho, ydomain, yquad, prec, maxiter, skip.iter,
M0, M_list, maxiteration, tolerance, id.basis = NULL, theta2, w2 = NULL, n, p) {
loop <- 1
ltheta2 <- length(theta2)
Theta2 <- matrix(0, ltheta2, maxiteration + 1)
Theta2[, loop] <- theta2
l <- rep(0, maxiteration + 1)
l[loop] <- 0
diff2 <- 1
d <- rep(0, maxiteration + 1)
d[1] <- diff2
zerodiff <- 1
while (diff2 >= tolerance & loop < maxiteration & (zerodiff) >= 1) {
loop <- loop + 1
densityfit <- sscden_selection(
formula = formula, response = response, data = data, w2 = w2, type = type, alpha = alpha, subset = subset,
na.action = na.action, rho = rho, ydomain = ydomain, yquad = yquad, prec = prec, maxiter = maxiter, skip.iter = skip.iter, id.basis = id.basis, p = p, theta2 = theta2
)
M <- tune.M(densityfit, w2, M0, M_list, k = 5, n, formula, response, data, p)[[1]]
theta1 <- densityfit$theta1
theta2.1 <- densityfit$theta2
R <- densityfit$R
ltheta2 <- length(theta2.1)
c1 <- densityfit$c
d1 <- densityfit$d
U <- densityfit$r
U2 <- NULL
for (i in (p + 1):(2 * p - 1)) {
U2 <- cbind(U2, U[, , i])
}
u <- densityfit$rbasis
u2 <- NULL
for (i in (p + 1):(2 * p - 1)) {
u2 <- cbind(u2, u[, , i])
}
g <- densityfit$g
t2 <- rep(0, length(g))
for (i in 1:length(g)) {
t2[i] <- exp(-g[i]) / sum(exp(-g))
}
B2 <- densityfit$int.r[, (p + 1):(2 * p - 1)]
la1 <- 10^densityfit$lambda / 2
Gmatrix <- (-kronecker(diag(ltheta2), t(c1)) %*% t(U2) %*% t2 + t(B2) %*% c1 + la1 * kronecker(diag(ltheta2), t(c1)) %*% t(u2) %*% c1) / w2
Hpart1 <- U2 %*% kronecker(diag(ltheta2), c1)
Hpart2 <- t(t2) %*% U2 %*% kronecker(diag(ltheta2), c1)
Hpart3 <- sqrt(t2) * Hpart1
Hmatrix <- (t(Hpart3) %*% Hpart3 - t(Hpart2) %*% Hpart2)
Hmatrix <- diag(1 / w2) %*% Hmatrix %*% diag(1 / w2)
if (is.positive.definite(Hmatrix)) {
Hmatrix <- Hmatrix
} else {
Hmatrix <- Hmatrix + diag(rep(1e-6, dim(Hmatrix)[1]))
}
dvec <- Hmatrix %*% theta2.1 - Gmatrix
Dmat <- Hmatrix
Amat <- rbind(diag(ltheta2), -w2)
bvec <- c(rep(0, ltheta2), -M)
theta2 <- My_solve.QP(Dmat, dvec, t(Amat), bvec)
theta2[theta2 < 1e-8] <- 0
Theta2[, loop] <- theta2
if (loop <= 3) {
zerodiff <- 1
} else {
zerodiff <- (sum(theta2 > 0) - sum(Theta2[, loop - 3] > 0))
}
diff2 <- sqrt(sum((Theta2[, loop] - Theta2[, loop - 1])^2)) / (sqrt(sum((Theta2[, loop - 1])^2)) + 1e-6)
d[loop] <- diff2
}
thre_list <- c(1e-2, 1e-3, 1e-4)
count <- 0
thre_mat <- rep(0, length(thre_list))
int.r <- densityfit$int.r
for (thre in thre_list) {
count <- count + 1
theta20 <- theta2
theta20[theta20 < thre] <- 0
R0 <- matrix(0, dim(densityfit$r)[1], dim(densityfit$r)[2])
for (i in 1:p) {
R0 <- R0 + 10^densityfit$theta1[i] * densityfit$r[, , i]
}
for (i in (p + 1):(2 * p - 1)) {
R0 <- R0 + theta20[i - p] * densityfit$r[, , i] / w2[i - p]
}
cv_g <- densityfit$s %*% d1 + R0 %*% c1
score <- (sum(exp(-cv_g)))
int.r.wk <- 0
for (i in 1:p) {
int.r.wk <- int.r.wk + 10^theta1[i] * int.r[, i]
}
for (i in (p + 1):(2 * p - 1)) {
int.r.wk <- int.r.wk + theta20[i - p] * int.r[, i] / w2[i - p]
}
thre_mat[count] <- log(score / n) + (dot(int.r.wk, c1) + dot(densityfit$int.s, d1)) / n
}
min_pos <- which.min(thre_mat)
bound <- thre_list[min_pos]
theta2[theta2 < bound] <- 0
list(loop = loop, theta2 = theta2, densityfit = densityfit)
}
tune.M <- function(densityfit, w2, M0, M_list, k = 5, n, formula, response, data, p) {
M_list1 <- M0 * M_list
cv_mat <- rep(0, length(M_list1))
count <- 0
id.basis <- densityfit$id.basis
densityfit <- densityfit
theta1.1 <- densityfit$theta1
p <- length(theta1.1)
theta2.1 <- densityfit$theta2
ltheta2 <- length(theta2.1)
c1 <- densityfit$c
d1 <- densityfit$d
R <- densityfit$R
ltheta2 <- length(theta2.1)
U <- densityfit$r
int.r <- densityfit$int.r
U2 <- NULL
for (i in (p + 1):(2 * p - 1)) {
U2 <- cbind(U2, U[, , i])
}
u <- densityfit$rbasis
u2 <- NULL
for (i in (p + 1):(2 * p - 1)) {
u2 <- cbind(u2, u[, , i])
}
g <- densityfit$g
la1 <- 10^densityfit$lambda / 2
n_k <- n / k
n_k_omit <- n - n_k
for (M in M_list1) {
count <- count + 1
loglikFold <- matrix(NA, ncol = k, nrow = 1)
intFold <- matrix(NA, ncol = k, nrow = 1)
grps <- cut(1:n, k, labels = FALSE)
for (kth in 1:k) {
omit <- which(grps == kth)
t2 <- rep(0, length(g))
gomit <- g[omit]
gkeep <- g[-omit]
for (i in 1:length(g)) {
t2[i] <- exp(-g[i]) / sum(exp(-gkeep))
}
for (i in omit) {
t2[i] <- 0
}
fit_int <- sscden_int(formula = formula, response = response, data = data, omit = omit, id.basis = id.basis, seed = 5732, p = p)
B2 <- fit_int$int.r[, (p + 1):(ltheta2 + p)] * n / n_k_omit
la1 <- 10^densityfit$lambda / 2
Gmatrix <- (-kronecker(diag(ltheta2), t(c1)) %*% t(U2) %*% t2 + t(B2) %*% c1 + la1 * kronecker(diag(ltheta2), t(c1)) %*% t(u2) %*% c1) / w2
Hpart1 <- U2 %*% kronecker(diag(ltheta2), c1)
Hpart2 <- t(t2) %*% U2 %*% kronecker(diag(ltheta2), c1)
Hpart3 <- sqrt(t2) * Hpart1
Hmatrix <- (t(Hpart3) %*% Hpart3 - t(Hpart2) %*% Hpart2)
Hmatrix <- diag(1 / w2) %*% Hmatrix %*% diag(1 / w2)
if (is.positive.definite(Hmatrix)) {
Hmatrix <- Hmatrix
} else {
Hmatrix <- Hmatrix + diag(rep(1e-6, dim(Hmatrix)[1]))
}
dvec <- Hmatrix %*% theta2.1 - Gmatrix
Dmat <- Hmatrix
Amat <- rbind(diag(ltheta2), -w2)
bvec <- c(rep(0, ltheta2), -M)
theta2 <- My_solve.QP(Dmat, dvec, t(Amat), bvec)
theta2[theta2 < 1e-8] <- 0
fit_int_omit <- sscden_int_omit(formula = formula, response = response, data = data, omit = omit, id.basis = id.basis, seed = 5732, p = p)
int.r_k <- fit_int_omit$int.r
int.r.wk <- 0
for (i in 1:p) {
int.r.wk <- int.r.wk + 10^theta1.1[i] * int.r_k[, i]
}
for (i in (p + 1):(2 * p - 1)) {
int.r.wk <- int.r.wk + theta2[i - p] * int.r_k[, i] / w2[i - p]
}
r <- densityfit$r
R <- densityfit$R1
for (i in (p + 1):(2 * p - 1)) {
R <- R + theta2[i - p] * r[, , i] / w2[i - p]
}
cv_g <- densityfit$s %*% d1 + R %*% c1
cv_g <- cv_g[omit]
score <- (sum(exp(-cv_g)))
loglikFold[, kth] <- score
intFold[, kth] <- dot(int.r.wk, c1)
}
cv_mat[count] <- log((apply(loglikFold, 1, sum)) / n) + (apply(intFold, 1, sum))
}
min_error_pos <- which.min(cv_mat)
M_opt <- M_list1[min_error_pos]
list(M_opt = M_opt)
}
sscden_int <- function(formula, response, type = NULL, data = list(), omit, weights,
subset, na.action = na.omit, alpha = 1.4,
id.basis = NULL, nbasis = NULL, seed = NULL, rho = list("xy"),
ydomain = as.list(NULL), yquad = NULL,
prec = 1e-7, maxiter = 30, skip.iter = TRUE, p = 2, theta2 = NULL, w2 = NULL) {
## Obtain model frame and model terms
mf <- match.call()
mf$response <- mf$type <- mf$alpha <- NULL
mf$id.basis <- mf$nbasis <- mf$seed <- mf$rho <- NULL
mf$ydomain <- mf$yquad <- mf$theta2 <- mf$w2 <- mf$omit <- NULL
mf$prec <- mf$maxiter <- mf$skip.iter <- mf$p <- NULL
term.wk <- terms.formula(formula)
ynames <- as.character(attr(terms(response), "variables"))[-1]
mf[[1]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
nobs <- nrow(mf)
cnt <- model.weights(mf)
if (is.null(cnt)) {
data$cnt <- rep(1, nobs)
} else {
data$cnt <- cnt
mf$"(weights)" <- NULL
}
## Generate sub-basis
if (is.null(id.basis)) {
if (is.null(nbasis)) nbasis <- max(30, ceiling(10 * nobs^(2 / 9)))
if (nbasis >= nobs) nbasis <- nobs
if (!is.null(seed)) set.seed(seed)
id.basis <- sample(nobs, nbasis, prob = cnt)
} else {
if (max(id.basis) > nobs | min(id.basis) < 1) {
stop("gss error in sscden1: id.basis out of range")
}
nbasis <- length(id.basis)
}
## Check inputs
mt <- attr(mf, "terms")
vars <- as.character(attr(mt, "variables"))[-1]
if (!all(ynames %in% vars)) stop("gss error in sscden1: response missing in model")
xnames <- vars[!(vars %in% ynames)]
if (is.null(xnames)) stop("gss error in sscden1: missing covariate")
## Set type for given ydomain
fac.list <- NULL
for (ylab in ynames) {
y <- mf[[ylab]]
if (is.factor(y)) {
fac.list <- c(fac.list, ylab)
ydomain[[ylab]] <- NULL
} else {
if (!is.vector(y) & is.null(yquad)) {
stop("gss error in sscden1: no default quadrature")
}
if (is.vector(y)) {
if (is.null(ydomain[[ylab]])) {
mn <- min(y)
mx <- max(y)
ydomain[[ylab]] <- c(mn, mx) + c(-1, 1) * (mx - mn) * .05
} else {
ydomain[[ylab]] <- c(min(ydomain[[ylab]]), max(ydomain[[ylab]]))
}
if (is.null(type[[ylab]])) {
type[[ylab]] <- list("cubic", ydomain[[ylab]])
} else {
if (length(type[[ylab]]) == 1) {
type[[ylab]] <- list(type[[ylab]][[1]], ydomain[[ylab]])
}
}
}
}
}
## Generate terms
term <- mkterm(mf, type)
term$labels <- term$labels[term$labels != "1"]
## obtain unique covariate observations
x <- xx <- mf[, xnames, drop = FALSE]
xx <- apply(xx, 1, function(x) paste(x, collapse = "\r"))
x.dup.ind <- duplicated(xx)
if (!is.null(cnt)) xx <- rep(xx, cnt)
xx.wt <- as.vector(table(xx)[unique(xx)])
xx.wt <- xx.wt / sum(xx.wt)
nx <- length(xx.wt)
v <- seq(1, nx, length.out = nx)
## calculate rho
if (is.null(rho$fun)) {
type <- rho[[1]]
if (type == "y") {
yfac <- TRUE
for (ylab in ynames) yfac <- yfac & is.factor(mf[, ylab])
if (!yfac) {
if (is.null(cnt)) cntt <- rep(1, dim(mf)[1])
rho <- ssden0(response,
data = data, weights = cnt, id.basis = id.basis,
alpha = 2, domain = ydomain, quad = yquad
)
qd.pt <- rho$quad$pt
qd.wt <- rho$quad$wt
env <- list(ydomain = ydomain, qd.pt = qd.pt, qd.wt = qd.wt, rho = rho)
fun <- function(x, y, env, outer.prod = FALSE) {
if (!outer.prod) {
dssden(env$rho, y)
} else {
t(matrix(dssden(env$rho, y), dim(y)[1], dim(x)[1]))
}
}
} else {
qd.pt <- data.frame(levels(mf[, ynames[1]]), stringsAsFactors = TRUE)
if (length(ynames) > 1) {
for (ylab in ynames[-1]) {
wk <- expand.grid(levels(mf[, ylab]), 1:dim(qd.pt)[1])
qd.pt <- data.frame(qd.pt[wk[, 2], ], wk[, 1], stringsAsFactors = TRUE)
}
}
colnames(qd.pt) <- ynames
qd.wt <- as.vector(table(mf[, rev(ynames)]))
qd.wt <- qd.wt / sum(qd.wt)
env <- list(qd.pt = qd.pt, qd.wt = qd.wt)
fun <- function(x, y, env, outer.prod = FALSE) {
if (!outer.prod) {
rep(1, dim(x)[1])
} else {
matrix(1, dim(x)[1], dim(y)[1])
}
}
}
rho <- list(fun = fun, env = env)
}
if (type == "xy") {
ydomain <- data.frame(ydomain)
mn <- ydomain[1, ]
mx <- ydomain[2, ]
dm <- ncol(ydomain)
if (dm == 1) {
## Gauss-Legendre quadrature
quad <- gauss.quad(200, c(mn, mx))
quad$pt <- data.frame(quad$pt)
colnames(quad$pt) <- colnames(ydomain)
} else {
## Smolyak cubature
qdsz.depth <- switch(min(dm, 6) - 1,
18,
14,
10,
9,
7
)
quad <- smolyak.quad(dm, qdsz.depth)
for (i in 1:ncol(ydomain)) {
ylab <- colnames(ydomain)[i]
wk <- mf[[ylab]]
jk <- ssden(~wk,
domain = data.frame(wk = ydomain[, i]), alpha = 2,
id.basis = id.basis, weights = cnt
)
quad$pt[, i] <- qssden(jk, quad$pt[, i])
quad$wt <- quad$wt / dssden(jk, quad$pt[, i])
}
jk <- wk <- NULL
quad$pt <- data.frame(quad$pt)
colnames(quad$pt) <- colnames(ydomain)
}
## Incorporate factors in quadrature
if (!is.null(fac.list)) {
for (i in 1:length(fac.list)) {
wk <- expand.grid(levels(mf[[fac.list[i]]]), 1:length(quad$wt))
quad$wt <- quad$wt[wk[, 2]]
col.names <- c(fac.list[i], colnames(quad$pt))
quad$pt <- data.frame(wk[, 1], quad$pt[wk[, 2], ], stringsAsFactors = TRUE)
colnames(quad$pt) <- col.names
}
}
rho <- list(NULL)
for (ylab in ynames) {
if (is.numeric(mf[[ylab]])) {
form <- as.formula(paste(ylab, "~", paste(xnames, collapse = "+")))
rho[[ylab]] <- ssanova(form, data = mf, id.basis = id.basis)
}
if (is.factor(mf[[ylab]])) {
form <- as.formula(paste("~(", paste(xnames, collapse = "+"), ")*", ylab))
resp <- as.formula(paste("~", ylab))
rho[[ylab]] <- ssllrm(form, resp, data = mf, id.basis = id.basis)
}
}
env <- list(ynames = ynames, ydomain = ydomain, qd.pt = quad$pt, qd.wt = quad$wt, rho = rho)
fun <- function(x, y, env, outer.prod = FALSE) {
z <- 1
for (ylab in env$ynames) {
yy <- y[[ylab]]
if (is.numeric(yy)) {
mu <- predict(env$rho[[ylab]], x)
sigma <- sqrt(env$rho[[ylab]]$varht)
ymn <- env$ydomain[1, ylab]
ymx <- env$ydomain[2, ylab]
if (!outer.prod) {
wk <- dnorm((yy - mu) / sigma) /
(pnorm((ymx - mu) / sigma) - pnorm((ymn - mu) / sigma))
z <- z * wk
} else {
wk <- t(outer(yy, mu, dnorm, sigma)) /
(pnorm((ymx - mu) / sigma) - pnorm((ymn - mu) / sigma))
z <- z * wk
}
}
if (is.factor(yy)) {
wk <- predict(env$rho[[ylab]], x)
if (!outer.prod) {
wk1 <- NULL
for (i in 1:length(yy)) {
wk1 <- c(wk1, wk[i, yy[i] == env$rho[[ylab]]$qd.pt])
}
z <- z * wk1
} else {
wk1 <- NULL
for (i in 1:length(yy)) {
wk1 <- cbind(wk1, wk[, yy[i] == env$rho[[ylab]]$qd.pt])
}
z <- z * wk1
}
}
}
z
}
rho <- list(fun = fun, env = env)
}
}
## Generate s, r, int.s, and int.r
rho.wk <- rho$fun(x[!x.dup.ind, , drop = FALSE], rho$env$qd.pt, rho$env, outer = TRUE)
rho.wk <- t(t(rho.wk) * rho$env$qd.wt)
rho.wk1 <- apply(rho.wk * xx.wt, 2, sum)
nmesh <- length(rho$env$qd.wt)
s <- r <- int.s <- int.r <- NULL
id.s <- id.r <- NULL
id.s.list <- id.r.list <- list(NULL)
nu <- nq <- 0
for (label in term$labels) {
vlist <- term[[label]]$vlist
x.list <- xnames[xnames %in% vlist]
y.list <- ynames[ynames %in% vlist]
xy <- mf[, vlist]
xy.basis <- mf[id.basis, vlist]
qd.xy <- data.frame(matrix(0, nmesh, length(vlist)))
names(qd.xy) <- vlist
qd.xy[, y.list] <- rho$env$qd.pt[, y.list]
if (length(x.list)) {
xx <- x[!x.dup.ind, x.list, drop = FALSE]
} else {
xx <- NULL
}
nphi <- term[[label]]$nphi
nrk <- term[[label]]$nrk
if (nphi) {
phi <- term[[label]]$phi
id.s.list[[label]] <- NULL
for (i in 1:nphi) {
nu <- nu + 1
s.wk <- phi$fun(xy, nu = i, env = phi$env)
s <- cbind(s, s.wk)
if (is.null(xx)) {
id.s <- c(id.s, nu)
id.s.list[[label]] <- c(id.s.list[[label]], nu)
qd.s.wk <- phi$fun(qd.xy[, , drop = TRUE], nu = i, env = phi$env)
int.s <- c(int.s, sum(qd.s.wk * rho.wk1))
} else {
if (length(y.list) == 0) {
names(xx) <- x.list
int.s <- c(int.s, sum(phi$fun(xx[, , drop = TRUE], i, phi$env) * xx.wt))
} else {
id.s <- c(id.s, nu)
id.s.list[[label]] <- c(id.s.list[[label]], nu)
int.s.wk <- 0
for (j in v[-omit]) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.s.wk <- phi$fun(qd.xy, i, phi$env)
int.s.wk <- int.s.wk + sum(qd.s.wk * rho.wk[j, ]) * xx.wt[j]
}
int.s <- c(int.s, int.s.wk)
}
}
}
}
if (nrk) {
if (nrk == 1) {
rk <- term[[label]]$rk
id.r.list[[label]] <- NULL
for (i in 1:nrk) {
nq <- nq + 1
r.wk <- rk$fun(xy, xy.basis, nu = i, env = rk$env, out = TRUE)
r <- array(c(r, r.wk), c(nobs, nbasis, nq))
if (is.null(xx)) {
id.r <- c(id.r, nq)
id.r.list[[label]] <- c(id.r.list[[label]], nq)
qd.r.wk <- rk$fun(qd.xy[, , drop = TRUE], xy.basis, nu = i, env = rk$env, out = TRUE)
int.r <- cbind(int.r, apply(rho.wk1 * qd.r.wk, 2, sum))
} else {
if (length(y.list) == 0) {
names(xx) <- x.list
qd.r.wk <- rk$fun(xx[, , drop = TRUE], xy.basis, i, rk$env, TRUE)
int.r <- cbind(int.r, apply(xx.wt * qd.r.wk, 2, sum))
} else {
id.r <- c(id.r, nq)
id.r.list[[label]] <- c(id.r.list[[label]], nq)
int.r.wk <- 0
for (j in v[-omit]) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.r.wk <- rk$fun(qd.xy, xy.basis, i, rk$env, TRUE)
int.r.wk <- int.r.wk + apply(rho.wk[j, ] * qd.r.wk, 2, sum) * xx.wt[j]
}
int.r <- cbind(int.r, int.r.wk)
}
}
}
}
if (nrk > 1) {
rtemp <- NULL
int.r_temp <- NULL
rk <- term[[label]]$rk
phi <- term[[label]]$phi
id.r.list[[label]] <- NULL
for (i in 1:nrk) {
rtemp.wk <- rk$fun(xy, xy.basis, nu = i, env = rk$env, out = TRUE)
rtemp <- array(c(rtemp, rtemp.wk), c(nobs, nbasis, i))
if (is.null(xx)) {
qd.r.wk <- rk$fun(qd.xy[, , drop = TRUE], xy.basis, nu = i, env = rk$env, out = TRUE)
int.r_temp <- cbind(int.r_temp, apply(rho.wk1 * qd.r.wk, 2, sum))
} else {
if (length(y.list) == 0) {
names(xx) <- x.list
qd.r.wk <- rk$fun(xx[, , drop = TRUE], xy.basis, i, rk$env, TRUE)
int.r_temp <- cbind(int.r_temp, apply(xx.wt * qd.r.wk, 2, sum))
} else {
int.r.wk <- 0
for (j in v[-omit]) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.r.wk <- rk$fun(qd.xy, xy.basis, i, rk$env, TRUE)
int.r.wk <- int.r.wk + apply(rho.wk[j, ] * qd.r.wk, 2, sum) * xx.wt[j]
}
int.r_temp <- cbind(int.r_temp, int.r.wk)
}
}
}
rk0 <- matrix(0, dim(rtemp)[1], dim(rtemp)[2])
for (j in 1:nphi) {
phix <- phi$fun(xy, j, phi$env)
phiy <- phi$fun(xy.basis, j, phi$env)
rk0 <- rk0 + outer(phix, phiy)
}
rtemp <- array(c(rtemp, rk0), c(nobs, nbasis, nrk + 1))
rk1 <- matrix(0, dim(rtemp)[1], dim(rtemp)[2])
for (i in 1:dim(rtemp)[3]) {
rk1 <- rk1 + rtemp[, , i]
}
nq <- nq + 1
r <- array(c(r, rk1), c(nobs, nbasis, nq))
id.r <- c(id.r, nq)
id.r.list[[label]] <- c(id.r.list[[label]], nq)
if (is.null(xx)) {
qd.r.wk_temp <- 0
for (j in 1:nphi) {
phix <- phi$fun(qd.xy[, , drop = TRUE], j, phi$env)
phiy <- phi$fun(xy.basis, j, phi$env)
qd.r.wk_temp <- qd.r.wk_temp + outer(phix, phiy)
}
int.r_temp <- cbind(int.r_temp, apply(rho.wk1 * qd.r.wk_temp, 2, sum))
} else {
if (length(y.list) == 0) {
names(xx) <- x.list
qd.r.wk_temp <- 0
for (j in 1:nphi) {
phix <- phi$fun(xx[, , drop = TRUE], j, phi$env)
phiy <- phi$fun(xy.basis, j, phi$env)
qd.r.wk_temp <- qd.r.wk_temp + outer(phix, phiy)
}
int.r_temp <- cbind(int.r_temp, apply(xx.wt * qd.r.wk_temp, 2, sum))
} else {
int.r.wk <- 0
for (j in v[-omit]) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.r.wk_temp <- 0
for (k in 1:nphi) {
phix <- phi$fun(qd.xy, k, phi$env)
phiy <- phi$fun(xy.basis, k, phi$env)
qd.r.wk_temp <- qd.r.wk_temp + outer(phix, phiy)
}
int.r.wk <- int.r.wk + apply(rho.wk[j, ] * qd.r.wk_temp, 2, sum) * xx.wt[j]
}
int.r_temp <- cbind(int.r_temp, int.r.wk)
}
}
int.r <- cbind(int.r, apply(int.r_temp, 1, sum))
}
}
}
if (!is.null(s)) {
s <- s[, 1:p]
int.s <- int.s[1:p]
}
## Brief description of model terms
desc <- NULL
for (label in term$labels) {
desc <- rbind(desc, as.numeric(c(term[[label]][c("nphi", "nrk")])))
}
desc <- rbind(desc, apply(desc, 2, sum))
rownames(desc) <- c(term$labels, "total")
colnames(desc) <- c("Unpenalized", "Penalized")
## Return the results
obj <- c(list(
call = match.call(), mf = mf, cnt = cnt, terms = term, desc = desc, rho = rho,
alpha = alpha, ynames = ynames, xnames = xnames,
x.dup.ind = x.dup.ind, xx.wt = xx.wt, id.s.list = id.s.list, id.r.list = id.r.list,
id.s = id.s, id.r = id.r, id.basis = id.basis, skip.iter = skip.iter, s = s, r = r, int.s = int.s, int.r = int.r
))
class(obj) <- c("sscden1", "sscden")
obj
}
sscden_int_omit <- function(formula, response, type = NULL, data = list(), omit, weights,
subset, na.action = na.omit, alpha = 1.4,
id.basis = NULL, nbasis = NULL, seed = NULL, rho = list("xy"),
ydomain = as.list(NULL), yquad = NULL,
prec = 1e-7, maxiter = 30, skip.iter = TRUE, p = 2, theta2 = NULL, w2 = NULL) {
## Obtain model frame and model terms
mf <- match.call()
mf$response <- mf$type <- mf$alpha <- NULL
mf$id.basis <- mf$nbasis <- mf$seed <- mf$rho <- NULL
mf$ydomain <- mf$yquad <- mf$theta2 <- mf$w2 <- mf$omit <- NULL
mf$prec <- mf$maxiter <- mf$skip.iter <- mf$p <- NULL
term.wk <- terms.formula(formula)
ynames <- as.character(attr(terms(response), "variables"))[-1]
mf[[1]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
nobs <- nrow(mf)
cnt <- model.weights(mf)
if (is.null(cnt)) {
data$cnt <- rep(1, nobs)
} else {
data$cnt <- cnt
mf$"(weights)" <- NULL
}
## Generate sub-basis
if (is.null(id.basis)) {
if (is.null(nbasis)) nbasis <- max(30, ceiling(10 * nobs^(2 / 9)))
if (nbasis >= nobs) nbasis <- nobs
if (!is.null(seed)) set.seed(seed)
id.basis <- sample(nobs, nbasis, prob = cnt)
} else {
if (max(id.basis) > nobs | min(id.basis) < 1) {
stop("gss error in sscden1: id.basis out of range")
}
nbasis <- length(id.basis)
}
## Check inputs
mt <- attr(mf, "terms")
vars <- as.character(attr(mt, "variables"))[-1]
if (!all(ynames %in% vars)) stop("gss error in sscden1: response missing in model")
xnames <- vars[!(vars %in% ynames)]
if (is.null(xnames)) stop("gss error in sscden1: missing covariate")
## Set type for given ydomain
fac.list <- NULL
for (ylab in ynames) {
y <- mf[[ylab]]
if (is.factor(y)) {
fac.list <- c(fac.list, ylab)
ydomain[[ylab]] <- NULL
} else {
if (!is.vector(y) & is.null(yquad)) {
stop("gss error in sscden1: no default quadrature")
}
if (is.vector(y)) {
if (is.null(ydomain[[ylab]])) {
mn <- min(y)
mx <- max(y)
ydomain[[ylab]] <- c(mn, mx) + c(-1, 1) * (mx - mn) * .05
} else {
ydomain[[ylab]] <- c(min(ydomain[[ylab]]), max(ydomain[[ylab]]))
}
if (is.null(type[[ylab]])) {
type[[ylab]] <- list("cubic", ydomain[[ylab]])
} else {
if (length(type[[ylab]]) == 1) {
type[[ylab]] <- list(type[[ylab]][[1]], ydomain[[ylab]])
}
}
}
}
}
## Generate terms
term <- mkterm(mf, type)
term$labels <- term$labels[term$labels != "1"]
## obtain unique covariate observations
x <- xx <- mf[, xnames, drop = FALSE]
xx <- apply(xx, 1, function(x) paste(x, collapse = "\r"))
x.dup.ind <- duplicated(xx)
if (!is.null(cnt)) xx <- rep(xx, cnt)
xx.wt <- as.vector(table(xx)[unique(xx)])
xx.wt <- xx.wt / sum(xx.wt)
nx <- length(xx.wt)
v <- seq(1, nx, length.out = nx)
## calculate rho
if (is.null(rho$fun)) {
type <- rho[[1]]
if (type == "y") {
yfac <- TRUE
for (ylab in ynames) yfac <- yfac & is.factor(mf[, ylab])
if (!yfac) {
if (is.null(cnt)) cntt <- rep(1, dim(mf)[1])
rho <- ssden0(response,
data = data, weights = cnt, id.basis = id.basis,
alpha = 2, domain = ydomain, quad = yquad
)
qd.pt <- rho$quad$pt
qd.wt <- rho$quad$wt
env <- list(ydomain = ydomain, qd.pt = qd.pt, qd.wt = qd.wt, rho = rho)
fun <- function(x, y, env, outer.prod = FALSE) {
if (!outer.prod) {
dssden(env$rho, y)
} else {
t(matrix(dssden(env$rho, y), dim(y)[1], dim(x)[1]))
}
}
} else {
qd.pt <- data.frame(levels(mf[, ynames[1]]), stringsAsFactors = TRUE)
if (length(ynames) > 1) {
for (ylab in ynames[-1]) {
wk <- expand.grid(levels(mf[, ylab]), 1:dim(qd.pt)[1])
qd.pt <- data.frame(qd.pt[wk[, 2], ], wk[, 1], stringsAsFactors = TRUE)
}
}
colnames(qd.pt) <- ynames
qd.wt <- as.vector(table(mf[, rev(ynames)]))
qd.wt <- qd.wt / sum(qd.wt)
env <- list(qd.pt = qd.pt, qd.wt = qd.wt)
fun <- function(x, y, env, outer.prod = FALSE) {
if (!outer.prod) {
rep(1, dim(x)[1])
} else {
matrix(1, dim(x)[1], dim(y)[1])
}
}
}
rho <- list(fun = fun, env = env)
}
if (type == "xy") {
ydomain <- data.frame(ydomain)
mn <- ydomain[1, ]
mx <- ydomain[2, ]
dm <- ncol(ydomain)
if (dm == 1) {
## Gauss-Legendre quadrature
quad <- gauss.quad(200, c(mn, mx))
quad$pt <- data.frame(quad$pt)
colnames(quad$pt) <- colnames(ydomain)
} else {
## Smolyak cubature
qdsz.depth <- switch(min(dm, 6) - 1,
18,
14,
10,
9,
7
)
quad <- smolyak.quad(dm, qdsz.depth)
for (i in 1:ncol(ydomain)) {
ylab <- colnames(ydomain)[i]
wk <- mf[[ylab]]
jk <- ssden(~wk,
domain = data.frame(wk = ydomain[, i]), alpha = 2,
id.basis = id.basis, weights = cnt
)
quad$pt[, i] <- qssden(jk, quad$pt[, i])
quad$wt <- quad$wt / dssden(jk, quad$pt[, i])
}
jk <- wk <- NULL
quad$pt <- data.frame(quad$pt)
colnames(quad$pt) <- colnames(ydomain)
}
## Incorporate factors in quadrature
if (!is.null(fac.list)) {
for (i in 1:length(fac.list)) {
wk <- expand.grid(levels(mf[[fac.list[i]]]), 1:length(quad$wt))
quad$wt <- quad$wt[wk[, 2]]
col.names <- c(fac.list[i], colnames(quad$pt))
quad$pt <- data.frame(wk[, 1], quad$pt[wk[, 2], ], stringsAsFactors = TRUE)
colnames(quad$pt) <- col.names
}
}
rho <- list(NULL)
for (ylab in ynames) {
if (is.numeric(mf[[ylab]])) {
form <- as.formula(paste(ylab, "~", paste(xnames, collapse = "+")))
rho[[ylab]] <- ssanova(form, data = mf, id.basis = id.basis)
}
if (is.factor(mf[[ylab]])) {
form <- as.formula(paste("~(", paste(xnames, collapse = "+"), ")*", ylab))
resp <- as.formula(paste("~", ylab))
rho[[ylab]] <- ssllrm(form, resp, data = mf, id.basis = id.basis)
}
}
env <- list(ynames = ynames, ydomain = ydomain, qd.pt = quad$pt, qd.wt = quad$wt, rho = rho)
fun <- function(x, y, env, outer.prod = FALSE) {
z <- 1
for (ylab in env$ynames) {
yy <- y[[ylab]]
if (is.numeric(yy)) {
mu <- predict(env$rho[[ylab]], x)
sigma <- sqrt(env$rho[[ylab]]$varht)
ymn <- env$ydomain[1, ylab]
ymx <- env$ydomain[2, ylab]
if (!outer.prod) {
wk <- dnorm((yy - mu) / sigma) /
(pnorm((ymx - mu) / sigma) - pnorm((ymn - mu) / sigma))
z <- z * wk
} else {
wk <- t(outer(yy, mu, dnorm, sigma)) /
(pnorm((ymx - mu) / sigma) - pnorm((ymn - mu) / sigma))
z <- z * wk
}
}
if (is.factor(yy)) {
wk <- predict(env$rho[[ylab]], x)
if (!outer.prod) {
wk1 <- NULL
for (i in 1:length(yy)) {
wk1 <- c(wk1, wk[i, yy[i] == env$rho[[ylab]]$qd.pt])
}
z <- z * wk1
} else {
wk1 <- NULL
for (i in 1:length(yy)) {
wk1 <- cbind(wk1, wk[, yy[i] == env$rho[[ylab]]$qd.pt])
}
z <- z * wk1
}
}
}
z
}
rho <- list(fun = fun, env = env)
}
}
## Generate s, r, int.s, and int.r
rho.wk <- rho$fun(x[!x.dup.ind, , drop = FALSE], rho$env$qd.pt, rho$env, outer = TRUE)
rho.wk <- t(t(rho.wk) * rho$env$qd.wt)
rho.wk1 <- apply(rho.wk * xx.wt, 2, sum)
nmesh <- length(rho$env$qd.wt)
s <- r <- int.s <- int.r <- NULL
id.s <- id.r <- NULL
id.s.list <- id.r.list <- list(NULL)
nu <- nq <- 0
for (label in term$labels) {
vlist <- term[[label]]$vlist
x.list <- xnames[xnames %in% vlist]
y.list <- ynames[ynames %in% vlist]
xy <- mf[, vlist]
xy.basis <- mf[id.basis, vlist]
qd.xy <- data.frame(matrix(0, nmesh, length(vlist)))
names(qd.xy) <- vlist
qd.xy[, y.list] <- rho$env$qd.pt[, y.list]
if (length(x.list)) {
xx <- x[!x.dup.ind, x.list, drop = FALSE]
} else {
xx <- NULL
}
nphi <- term[[label]]$nphi
nrk <- term[[label]]$nrk
if (nphi) {
phi <- term[[label]]$phi
id.s.list[[label]] <- NULL
for (i in 1:nphi) {
nu <- nu + 1
s.wk <- phi$fun(xy, nu = i, env = phi$env)
s <- cbind(s, s.wk)
if (is.null(xx)) {
id.s <- c(id.s, nu)
id.s.list[[label]] <- c(id.s.list[[label]], nu)
qd.s.wk <- phi$fun(qd.xy[, , drop = TRUE], nu = i, env = phi$env)
int.s <- c(int.s, sum(qd.s.wk * rho.wk1))
} else {
if (length(y.list) == 0) {
names(xx) <- x.list
int.s <- c(int.s, sum(phi$fun(xx[, , drop = TRUE], i, phi$env) * xx.wt))
} else {
id.s <- c(id.s, nu)
id.s.list[[label]] <- c(id.s.list[[label]], nu)
int.s.wk <- 0
for (j in v[omit]) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.s.wk <- phi$fun(qd.xy, i, phi$env)
int.s.wk <- int.s.wk + sum(qd.s.wk * rho.wk[j, ]) * xx.wt[j]
}
int.s <- c(int.s, int.s.wk)
}
}
}
}
if (nrk) {
if (nrk == 1) {
rk <- term[[label]]$rk
id.r.list[[label]] <- NULL
for (i in 1:nrk) {
nq <- nq + 1
r.wk <- rk$fun(xy, xy.basis, nu = i, env = rk$env, out = TRUE)
r <- array(c(r, r.wk), c(nobs, nbasis, nq))
if (is.null(xx)) {
id.r <- c(id.r, nq)
id.r.list[[label]] <- c(id.r.list[[label]], nq)
qd.r.wk <- rk$fun(qd.xy[, , drop = TRUE], xy.basis, nu = i, env = rk$env, out = TRUE)
int.r <- cbind(int.r, apply(rho.wk1 * qd.r.wk, 2, sum))
} else {
if (length(y.list) == 0) {
names(xx) <- x.list
qd.r.wk <- rk$fun(xx[, , drop = TRUE], xy.basis, i, rk$env, TRUE)
int.r <- cbind(int.r, apply(xx.wt * qd.r.wk, 2, sum))
} else {
id.r <- c(id.r, nq)
id.r.list[[label]] <- c(id.r.list[[label]], nq)
int.r.wk <- 0
for (j in v[omit]) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.r.wk <- rk$fun(qd.xy, xy.basis, i, rk$env, TRUE)
int.r.wk <- int.r.wk + apply(rho.wk[j, ] * qd.r.wk, 2, sum) * xx.wt[j]
}
int.r <- cbind(int.r, int.r.wk)
}
}
}
}
if (nrk > 1) {
rtemp <- NULL
int.r_temp <- NULL
rk <- term[[label]]$rk
phi <- term[[label]]$phi
id.r.list[[label]] <- NULL
for (i in 1:nrk) {
rtemp.wk <- rk$fun(xy, xy.basis, nu = i, env = rk$env, out = TRUE)
rtemp <- array(c(rtemp, rtemp.wk), c(nobs, nbasis, i))
if (is.null(xx)) {
qd.r.wk <- rk$fun(qd.xy[, , drop = TRUE], xy.basis, nu = i, env = rk$env, out = TRUE)
int.r_temp <- cbind(int.r_temp, apply(rho.wk1 * qd.r.wk, 2, sum))
} else {
if (length(y.list) == 0) {
names(xx) <- x.list
qd.r.wk <- rk$fun(xx[, , drop = TRUE], xy.basis, i, rk$env, TRUE)
int.r_temp <- cbind(int.r_temp, apply(xx.wt * qd.r.wk, 2, sum))
} else {
int.r.wk <- 0
for (j in v[omit]) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.r.wk <- rk$fun(qd.xy, xy.basis, i, rk$env, TRUE)
int.r.wk <- int.r.wk + apply(rho.wk[j, ] * qd.r.wk, 2, sum) * xx.wt[j]
}
int.r_temp <- cbind(int.r_temp, int.r.wk)
}
}
}
rk0 <- matrix(0, dim(rtemp)[1], dim(rtemp)[2])
for (j in 1:nphi) {
phix <- phi$fun(xy, j, phi$env)
phiy <- phi$fun(xy.basis, j, phi$env)
rk0 <- rk0 + outer(phix, phiy)
}
rtemp <- array(c(rtemp, rk0), c(nobs, nbasis, nrk + 1))
rk1 <- matrix(0, dim(rtemp)[1], dim(rtemp)[2])
for (i in 1:dim(rtemp)[3]) {
rk1 <- rk1 + rtemp[, , i]
}
nq <- nq + 1
r <- array(c(r, rk1), c(nobs, nbasis, nq))
id.r <- c(id.r, nq)
id.r.list[[label]] <- c(id.r.list[[label]], nq)
if (is.null(xx)) {
qd.r.wk_temp <- 0
for (j in 1:nphi) {
phix <- phi$fun(qd.xy[, , drop = TRUE], j, phi$env)
phiy <- phi$fun(xy.basis, j, phi$env)
qd.r.wk_temp <- qd.r.wk_temp + outer(phix, phiy)
}
int.r_temp <- cbind(int.r_temp, apply(rho.wk1 * qd.r.wk_temp, 2, sum))
} else {
if (length(y.list) == 0) {
names(xx) <- x.list
qd.r.wk_temp <- 0
for (j in 1:nphi) {
phix <- phi$fun(xx[, , drop = TRUE], j, phi$env)
phiy <- phi$fun(xy.basis, j, phi$env)
qd.r.wk_temp <- qd.r.wk_temp + outer(phix, phiy)
}
int.r_temp <- cbind(int.r_temp, apply(xx.wt * qd.r.wk_temp, 2, sum))
} else {
int.r.wk <- 0
for (j in v[omit]) {
qd.xy[, x.list] <- xx[rep(j, nmesh), ]
qd.r.wk_temp <- 0
for (k in 1:nphi) {
phix <- phi$fun(qd.xy, k, phi$env)
phiy <- phi$fun(xy.basis, k, phi$env)
qd.r.wk_temp <- qd.r.wk_temp + outer(phix, phiy)
}
int.r.wk <- int.r.wk + apply(rho.wk[j, ] * qd.r.wk_temp, 2, sum) * xx.wt[j]
}
int.r_temp <- cbind(int.r_temp, int.r.wk)
}
}
int.r <- cbind(int.r, apply(int.r_temp, 1, sum))
}
}
}
if (!is.null(s)) {
s <- s[, 1:p]
int.s <- int.s[1:p]
}
## Brief description of model terms
desc <- NULL
for (label in term$labels) {
desc <- rbind(desc, as.numeric(c(term[[label]][c("nphi", "nrk")])))
}
desc <- rbind(desc, apply(desc, 2, sum))
rownames(desc) <- c(term$labels, "total")
colnames(desc) <- c("Unpenalized", "Penalized")
## Return the results
obj <- c(list(
call = match.call(), mf = mf, cnt = cnt, terms = term, desc = desc, rho = rho,
alpha = alpha, ynames = ynames, xnames = xnames,
x.dup.ind = x.dup.ind, xx.wt = xx.wt, id.s.list = id.s.list, id.r.list = id.r.list,
id.s = id.s, id.r = id.r, id.basis = id.basis, skip.iter = skip.iter, s = s, r = r, int.s = int.s, int.r = int.r
))
class(obj) <- c("sscden1", "sscden")
obj
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.