#' @title Random-Intercept \code{\link[EGAnet]{EGA}}
#'
#' @description Estimates the number of substantive dimensions after controlling
#' for wording effects. EGA is applied to a residual correlation matrix after
#' subtracting and random intercept factor with equal unstandardized loadings
#' from all the regular and unrecoded reversed items in the database
#'
#' @param data Matrix or data frame.
#' Should consist only of variables to be used in the analysis.
#' \strong{Must} be raw data and not a correlation matrix
#'
#' @param n Numeric (length = 1).
#' Sample size if \code{data} provided is a correlation matrix
#'
#' @param corr Character (length = 1).
#' Method to compute correlations.
#' Defaults to \code{"auto"}.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{"auto"} --- Automatically computes appropriate correlations for
#' the data using Pearson's for continuous, polychoric for ordinal,
#' tetrachoric for binary, and polyserial/biserial for ordinal/binary with
#' continuous. To change the number of categories that are considered
#' ordinal, use \code{ordinal.categories}
#' (see \code{\link[EGAnet]{polychoric.matrix}} for more details)
#'
#' \item \code{"cor_auto"} --- Uses \code{\link[qgraph]{cor_auto}} to compute correlations.
#' Arguments can be passed along to the function
#'
#' \item \code{"cosine"} --- Uses \code{\link[EGAnet]{cosine}} to compute cosine similarity
#'
#' \item \code{"pearson"} --- Pearson's correlation is computed for all
#' variables regardless of categories
#'
#' \item \code{"spearman"} --- Spearman's rank-order correlation is computed
#' for all variables regardless of categories
#'
#' }
#'
#' For other similarity measures, compute them first and input them
#' into \code{data} with the sample size (\code{n})
#'
#' @param na.data Character (length = 1).
#' How should missing data be handled?
#' Defaults to \code{"pairwise"}.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{"pairwise"} --- Computes correlation for all available cases between
#' two variables
#'
#' \item \code{"listwise"} --- Computes correlation for all complete cases in the dataset
#'
#' }
#'
#' @param model Character (length = 1).
#' Defaults to \code{"glasso"}.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{"BGGM"} --- Computes the Bayesian Gaussian Graphical Model.
#' Set argument \code{ordinal.categories} to determine
#' levels allowed for a variable to be considered ordinal.
#' See \code{?BGGM::estimate} for more details
#'
#' \item \code{"glasso"} --- Computes the GLASSO with EBIC model selection.
#' See \code{\link[EGAnet]{EBICglasso.qgraph}} for more details
#'
#' \item \code{"TMFG"} --- Computes the TMFG method.
#' See \code{\link[EGAnet]{TMFG}} for more details
#'
#' }
#'
#' @param algorithm Character or
#' \code{igraph} \code{cluster_*} function (length = 1).
#' Defaults to \code{"walktrap"}.
#' Three options are listed below but all are available
#' (see \code{\link[EGAnet]{community.detection}} for other options):
#'
#' \itemize{
#'
#' \item \code{"leiden"} --- See \code{\link[igraph]{cluster_leiden}} for more details
#'
#' \item \code{"louvain"} --- By default, \code{"louvain"} will implement the Louvain algorithm using
#' the consensus clustering method (see \code{\link[EGAnet]{community.consensus}}
#' for more information). This function will implement
#' \code{consensus.method = "most_common"} and \code{consensus.iter = 1000}
#' unless specified otherwise
#'
#' \item \code{"walktrap"} --- See \code{\link[igraph]{cluster_walktrap}} for more details
#'
#' }
#'
#' @param uni.method Character (length = 1).
#' What unidimensionality method should be used?
#' Defaults to \code{"louvain"}.
#' Available options:
#'
#' \itemize{
#'
#' \item \code{"expand"} --- Expands the correlation matrix with four variables correlated 0.50.
#' If number of dimension returns 2 or less in check, then the data
#' are unidimensional; otherwise, regular EGA with no matrix
#' expansion is used. This method was used in the Golino et al.'s (2020)
#' \emph{Psychological Methods} simulation
#'
#' \item \code{"LE"} --- Applies the Leading Eigenvector algorithm
#' (\code{\link[igraph]{cluster_leading_eigen}})
#' on the empirical correlation matrix. If the number of dimensions is 1,
#' then the Leading Eigenvector solution is used; otherwise, regular EGA
#' is used. This method was used in the Christensen et al.'s (2023)
#' \emph{Behavior Research Methods} simulation
#'
#' \item \code{"louvain"} --- Applies the Louvain algorithm (\code{\link[igraph]{cluster_louvain}})
#' on the empirical correlation matrix. If the number of dimensions is 1,
#' then the Louvain solution is used; otherwise, regular EGA is used.
#' This method was validated Christensen's (2022) \emph{PsyArXiv} simulation.
#' Consensus clustering can be used by specifying either
#' \code{"consensus.method"} or \code{"consensus.iter"}
#'
#' }
#'
#' @param plot.EGA Boolean (length = 1).
#' If \code{TRUE}, returns a plot of the network and its estimated dimensions.
#' Defaults to \code{TRUE}
#'
#' @param verbose Boolean (length = 1).
#' Whether messages and (insignificant) warnings should be output.
#' Defaults to \code{FALSE} (silent calls).
#' Set to \code{TRUE} to see all messages and warnings for every function call
#'
#' @param ... Additional arguments to be passed on to
#' \code{\link[EGAnet]{auto.correlate}},
#' \code{\link[EGAnet]{network.estimation}},
#' \code{\link[EGAnet]{community.detection}},
#' \code{\link[EGAnet]{community.consensus}}, and
#' \code{\link[EGAnet]{EGA}}
#'
#' @return Returns a list containing:
#'
#' \item{EGA}{Results from \code{\link[EGAnet]{EGA}}}
#'
#' \item{RI}{A list containing information about the random-intercept
#' model (if the model converged):
#'
#' \itemize{
#'
#' \item \code{fit} --- The fit object for the random-intercept model using \code{\link[lavaan]{cfa}}
#'
#' \item \code{lavaan.args} --- The arguments used in \code{\link[lavaan]{cfa}}
#'
#' \item \code{loadings} --- Standardized loadings from the random-intercept model
#'
#' \item \code{correlation} --- Residual correlations after accounting for the random-intercept model
#'
#' }
#'
#' }
#'
#' \item{TEFI}{\code{link[EGAnet]{tefi}} for the estimated structure}
#'
#' \item{plot.EGA}{Plot output if \code{plot.EGA = TRUE}}
#'
#' @author
#' Alejandro Garcia-Pardina <alejandrogp97@gmail.com>,
#' Francisco J. Abad <fjose.abad@uam.es>,
#' Alexander P. Christensen <alexpaulchristensen@gmail.com>,
#' Hudson Golino <hfg9s at virginia.edu>,
#' Luis Eduardo Garrido <luisgarrido@pucmm.edu.do>, and
#' Robert Moulder <rgm4fd@virginia.edu>
#'
#' @examples
#' # Obtain example data
#' wmt <- wmt2[,7:24]
#'
#' # riEGA example
#' riEGA(data = wmt, plot.EGA = FALSE)
#' # no plot for CRAN checks
#'
#' @references
#' \strong{Selection of CFA Estimator} \cr
#' Rhemtulla, M., Brosseau-Liard, P. E., & Savalei, V. (2012).
#' When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions.
#' \emph{Psychological Methods}, \emph{17}, 354-373.
#'
#' @seealso \code{\link[EGAnet]{plot.EGAnet}} for plot usage in \code{EGAnet}
#'
#' @export
#'
# Random-Intercept EGA
# Superceded 'residualEGA.R' on 17.04.2022
# Updated 21.09.2024
riEGA <- function(
data, n = NULL,
corr = c("auto", "cor_auto", "cosine", "pearson", "spearman"),
na.data = c("pairwise", "listwise"),
model = c("glasso", "TMFG"),
algorithm = c("leiden", "louvain", "walktrap"),
uni.method = c("expand", "LE", "louvain"),
plot.EGA = TRUE, verbose = FALSE,
...
)
{
# Argument errors (return data in case of tibble)
data <- riEGA_errors(data, n, plot.EGA, verbose, ...)
# Check for missing arguments (argument, default, function)
corr <- set_default(corr, "auto", riEGA)
na.data <- set_default(na.data, "pairwise", auto.correlate)
model <- set_default(model, "glasso", network.estimation)
algorithm <- set_default(algorithm, "walktrap", community.detection)
uni.method <- set_default(uni.method, "louvain", community.unidimensional)
# Obtain correlations
output <- obtain_sample_correlations(data, n, corr, na.data, verbose)
# Catch BGGM
if(model == "bggm"){
stop(
"'model = BGGM' is not supported in `riEGA` because it requires the original data and the residual correlation matrix from the random-intercept model is used as input into `EGA`.",
call. = FALSE
)
}
# Ensure data has names
data <- ensure_dimension_names(data)
# Check that data is not symmetric or square matrix
if(is_symmetric(data)){
stop(
"A symmetric matrix was input into 'data'. The original data needs to be used to properly estimate the random-intercept model.",
call. = FALSE
)
}
# Get data dimensions
dimensions <- dim(data)
# Get variable names
variable_names <- dimnames(data)[[2]]
# Get ellipse arguments
ellipse <- list(...)
# Get {lavaan}'s CFA function
cfa_FUN <- silent_load(lavaan::cfa)
# Get {lavaan} CFA arguments
lavaan_ARGS <- obtain_arguments(cfa_FUN, ellipse)
# Set random-intercept model
lavaan_ARGS$model <- paste(
"RI =~", paste0("1*", variable_names, collapse = " + ")
)
# Set {lavaan} arguments
lavaan_ARGS[c(
"sample.cov", "sample.nobs", "estimator",
"std.lv", "se"
)] <- list(
output$correlation_matrix, output$n,
swiftelse("estimator" %in% names(ellipse), ellipse$estimator, "ML"),
FALSE, "none"
)
# Fit model
fit <- try(
do.call(
what = "cfa_FUN",
# not sure why {lavaan}'s `cfa` function
# needs to be in quotes...but it does
args = lavaan_ARGS
),
silent = TRUE
)
# Check for non-convergence
if(is(fit, "try-error")){
# Let user know that random-intercept model did not converge
message(
"Random-intercept model did not converge suggesting that there is not substantial evidence for wording effects."
)
# Get correlations since they won't come from random-intercept model
correlation_matrix <- output$correlation_matrix
# Get correlations since they won't come from random-intercept model
if(corr == "auto"){
# Compute correlations
correlation_matrix <- auto.correlate(
data = data, corr = "pearson",
na.data = na.data, verbose = verbose,
needs_usable = FALSE, # skips usable data check
...
)
}else{
# Obtain correlations using base R
correlation_matrix <- cor(data, use = na.data, method = corr)
}
}else{ # Proceed with random-intercept model
# Obtain random-intercept loadings
ri_loadings <- lavaan::inspect(fit, what = "std")$lambda
# Obtain residual correlation matrix
correlation_matrix <- lavaan::residuals(fit, type = "cor")$cov
# Change diagonal to 1
diag(correlation_matrix) <- 1
# Ensure positive definite
if(!is_positive_definite(correlation_matrix)){
correlation_matrix <- as.matrix(
Matrix::nearPD(
correlation_matrix,
corr = TRUE,
keepDiag = TRUE
)$mat
)
}else{ # Remove {lavaan} class
correlation_matrix <- unclass(correlation_matrix)
}
}
# Estimate EGA
ega_result <- EGA(
data = correlation_matrix, n = dimensions[1],
corr = corr, na.data = na.data, model = model,
algorithm = algorithm, uni.method = uni.method,
plot.EGA = FALSE, verbose = verbose,
needs_usable = FALSE, # skips usable data check
...
)
# Set up results
results <- list(
EGA = ega_result,
RI = list(fit = fit, lavaan.args = lavaan_ARGS)
)
# Add methods for random-intercept model
attr(results$RI, "methods") <- list(
model = lavaan_ARGS$model,
estimator = lavaan_ARGS$estimator,
ordered = lavaan_ARGS$ordered
)
# Check for random-intercept model convergence
if(!is(fit, "try-error")){
# Send loadings and correlations
results$RI$loadings <- ri_loadings
results$RI$correlation <- correlation_matrix
# Add loadings attribute
attr(results$RI, "methods")$loading <- unname(unique(ri_loadings))
# Send message about recoding (regardless of 'verbose')
message(
paste0(
"The random-intercept model converged. Wording effects likely. Results are only valid if data are ",
styletext("unrecoded", defaults = "underline"), "."
)
)
}
# Make class "riEGA"
class(results) <- "riEGA"
# Add TEFI to the result
results$TEFI <- results$EGA$TEFI
# Check for plot
if(plot.EGA && sum(results$EGA$network != 0)){
# Set up plot
results$Plot.EGA <- plot(results, ...)
# Actually send the plot
silent_plot(results$Plot.EGA)
}
# Return results
return(results)
}
# Bug checking ----
## Basic input
# data = wmt2[,7:24]; n = NULL; corr = "auto"; estimator = "auto"
# na.data = "pairwise"; model = "glasso"; algorithm = "leiden"
# uni.method = "louvain"; plot.EGA = TRUE; verbose = FALSE;
# ellipse = list()
#' @noRd
# Errors ----
# Updated 07.09.2023
riEGA_errors <- function(data, n, plot.EGA, verbose, ...)
{
# 'data' errors
object_error(data, c("matrix", "data.frame", "tibble"), "riEGA")
# Check for tibble
if(get_object_type(data) == "tibble"){
data <- as.data.frame(data)
}
# 'n' errors
if(!is.null(n)){
length_error(n, 1, "riEGA")
typeof_error(n, "numeric", "riEGA")
}
# 'plot.EGA' errors
length_error(plot.EGA, 1, "riEGA")
typeof_error(plot.EGA, "logical", "riEGA")
# 'verbose' errors
length_error(verbose, 1, "riEGA")
typeof_error(verbose, "logical", "riEGA")
# Check for usable data
if(needs_usable(list(...))){
data <- usable_data(data, verbose)
}
# Return usable data in case of tibble
return(data)
}
#' @exportS3Method
# S3 Print Method ----
# Updated 28.06.2023
print.riEGA <- function(x, ...)
{
# Print regular EGA result
print(x$EGA)
# Add random-intercept model
ri_attributes <- attr(x$RI, "methods")
# Add break space
cat("\n\n----\n\n")
# Print estimator
cat("Random-Intercept Estimator: ", ri_attributes$estimator, "\n")
cat("Random-Intercept Loading: ", format_decimal(ri_attributes$loading, 3))
}
#' @exportS3Method
# S3 Summary Method ----
# Updated 05.07.2023
summary.riEGA <- function(object, ...)
{
print(object, ...) # same as print
}
#' @exportS3Method
# S3 Plot Method ----
# Updated 28.06.2023
plot.riEGA <- function(x, ...)
{
# Return plot
single_plot(
network = x$EGA$network,
wc = x$EGA$wc,
...
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.