#!!!!! Ask Georgia: In Johnsan, the age and gender are reported on each arm - how to combine thier SD
#!!!!! SEX in the dataset - 1 is F or M
#!!!!! how to incorporate different studies
# A = Placebo
# B = Dimethyl fumarate
# C = Glatiramer acetate
# load libraries
library(sandwich)
library(dplyr)
library(tidyr)
library(devtools)
library(R2jags)
install_github('htx-r/GenericModelNMA',force = T)
library(GenericModelNMA)
#----- Prepare Data -------
# load data
source('cleanData.R') # contains the FOUR different datasets
# RCT-IPD
rct.ipd <-MSrelapse
# RCT-AD
rct.ad<-rct.ad[which(rct.ad$study=="Bornstein" | rct.ad$study=="Johnson"),]
# IPDdata - AB
rct.ipd_DEFINE <- rct.ipd[rct.ipd$STUDYID=='DEFINE',]
AB.IPD <-rct.ipd_DEFINE%>%
with(data.frame(ID=1:nrow(rct.ipd_DEFINE),
age=as.integer(AGE),
gender=factor(SEX),
trt=as.character(recode(TRT01A,'Dimethyl fumarate' = 'B','Placebo'='A')),
y=as.integer(RELAPSE2year)-1)
)
# ADdata - AC
# I took the data from Avilable aggregated data for MS relapse.docx - only for Johnson study
AC.AgD <- data.frame(age.mean=34.3,
age.sd=6.5,
N.male=30,
prop.male=0.24,
y.A.sum=97,
y.A.bar=97/126,
N.A=126,
y.C.sum=89,
y.C.bar=89/125,
N.C=125)
###########################
# MAIC
###########################
#** 1.weights
# the objective function to minimize
objfn <- function(a1, X){
sum(exp(X %*% a1))
}
gradfn <- function(a1, X){
colSums(sweep(X, 1, exp(X %*% a1), "*"))
}
X.EM.0 <- sweep(with(AB.IPD, cbind(age, age^2)), 2,
with(AC.AgD, c(age.mean, age.mean^2 + age.sd^2)), '-')
# find the optimal a1
opt1 <- optim(par = c(0,0), fn = objfn, gr = gradfn, X = X.EM.0, method = "BFGS")
# ... result
a1 <- opt1$par # the optimal a1
wt <- exp(X.EM.0 %*% a1)
# resclaed weight
N_AB <-nrow(AB.IPD)
wt.rs <- (wt / sum(wt)) * N_AB
#*** 2. estimate the indirect BC effect
# AB effect
fit1 <-
AB.IPD %>% mutate(y0 = 1 - y, wt = wt) %>%
glm(cbind(y,y0) ~ trt, data = ., family = binomial, weights = wt)
# Sandwich estimator of variance matrix
V.sw <- vcovHC(fit1)
# The log OR of B vs. A is just the trtB parameter estimate,
# since effect modifiers were centred
print(d.AB.MAIC <- coef(fit1)["trtB"])
print(var.d.AB.MAIC <- V.sw["trtB","trtB"])
# AC parameter
# Estimated log OR of C vs. A from the AC trial
d.AC <- with(AC.AgD, log(y.C.sum * (N.A - y.A.sum) / (y.A.sum * (N.C - y.C.sum))))
var.d.AC <- with(AC.AgD, 1/y.A.sum + 1/(N.A - y.A.sum) + 1/y.C.sum + 1/(N.C - y.C.sum))
# Indirect comparison: BC
print(d.BC.MAIC <- d.AC - d.AB.MAIC)
#
print(var.d.BC.MAIC <- var.d.AC + var.d.AB.MAIC)
#
###########################
# STC implementation
###########################
AB.IPD$y0 <- 1 - AB.IPD$y # Add in dummy non-event column
# Fit binomial GLM
STC.GLM <- glm(cbind(y,y0) ~ trt*I(age - AC.AgD$age.mean),
data = AB.IPD, family = binomial)
summary(STC.GLM)
# Try adding prognostic variables to improve model fit
add1(STC.GLM, ~.+gender, test="Chisq")
# does not improve the fit match so will leave gender out of the model
# estimate the AB effect in the AC population
print(d.AB.STC <- coef(STC.GLM)["trtB"])
# its variance
print(var.d.AB.STC <- vcov(STC.GLM)["trtB","trtB"])
## indirect comparison
print(d.BC.STC <- d.AC - d.AB.STC)
print(var.d.BC.STC <- var.d.AC + var.d.AB.STC)
##################
# Summary
##################
# unadjusted estimate of AB effect in AC population
# AB.IPD %>% group_by(trt) %>%
# summarise(y.sum = sum(y)) %>%
# spread(trt, y.sum) %>%
# with({
# d.AB.AB <<- log(B * (N_AB/2 - A) / (A * (N_AB/2 - B)))
# var.d.AB.AB <<- 1/B + 1/(N_AB/2 - A) + 1/A + 1/(N_AB/2 - B)
# })
#
# # unadjusted BC estimated effect
# d.BC.NAIVE <- d.AC - d.AB.AB
# var.d.BC.NAIVE <- var.d.AC + var.d.AB.AB
jagsdataIPDADnetmeta<- with(rct.ipd,list(
nIPD=3,
np=nrow(rct.ipd),
studyid=as.numeric(factor(STUDYID)),
y=as.numeric(RELAPSE2year)-1,
t= rbind(c(4,1,NA),c(4,1,2),c(4,3,NA), c(4,2,NA),c(4,2,NA)),
na=c(2,3,2,2,2),
treat=as.numeric(factor(TRT01A)),
baseline=rep(4,nrow(rct.ipd)),
ref=4,
nt=4,
nAD=2,
r=rbind(c(NA,11,NA,19),c(NA,89,NA,97)),
n=rbind(c(NA,25,NA,25),c(NA,125,NA,126))
)
)
jagsmodelIPDADnetmeta <- jags.parallel(data = jagsdataIPDADnetmeta,inits=NULL,parameters.to.save = c('d','tau','LOR'),model.file = modelIPDADnetmeta,
n.chains=3,n.iter = 10000,n.burnin = 2000,DIC=F,n.thin = 1)
jagsmodelIPDADnetmeta
# unadjusted BC estimated effect
d.AC.NAIVE <- -jagsmodelIPDADnetmeta$BUGSoutput$summary['LOR[4,1]','mean']
var.d.AC.NAIVE<- jagsmodelIPDADnetmeta$BUGSoutput$summary['LOR[4,1]','sd']^2
d.AB.NAIVE <- -jagsmodelIPDADnetmeta$BUGSoutput$summary['LOR[4,2]','mean']
var.d.AB.NAIVE<- jagsmodelIPDADnetmeta$BUGSoutput$summary['LOR[4,2]','sd']^2
d.BC.NAIVE <- jagsmodelIPDADnetmeta$BUGSoutput$summary['LOR[2,1]','mean']
var.d.BC.NAIVE<- jagsmodelIPDADnetmeta$BUGSoutput$summary['LOR[2,1]','sd']^2
# d.BC.NAIVE <- d.AC - d.AB.AB
# var.d.BC.NAIVE <- var.d.AC + var.d.AB.AB
#######
# Saramago
######
## *** # 4 # RCT-IPD-AD NMR - only DEFINE as IPD and Johnson as AD
jagsdataIPDADnetmetareg<- with(rct.ipd,list(
nIPD=3,
np=nrow(rct.ipd),
studyid=as.numeric(factor(STUDYID)),
y=as.numeric(RELAPSE2year)-1,
x=as.numeric(AGE),
#xbar=unlist(sapply(unique(rct.ipd$STUDYID),function(i) rep(round(mean(rct.ipd[rct.ipd$STUDYID==i,'AGE'],na.rm = T),1),nrow(rct.ipd[rct.ipd$STUDYID==i,])))),
t= rbind(c(4,1,NA),c(4,1,2),c(4,3,NA), c(4,2,NA),c(4,2,NA)),
na=c(2,3,2,2,2),
treat=as.numeric(factor(TRT01A)),
baseline=rep(4,nrow(rct.ipd)),
ref=4,
nt=4,
nAD=2,
r=rbind(c(NA,19,NA,11),c(NA,97,NA,89)),
n=rbind(c(NA,25,NA,25),c(NA,126,NA,125)),
xbar.a =c(34.3,30)
)
)
jagsmodelIPDADnetmetareg <- jags.parallel(data = jagsdataIPDADnetmetareg,inits=NULL,parameters.to.save = c('d','tau','b','LOR'),model.file = modelIPDADnetmetareg,
n.chains=3,n.iter = 10000,n.burnin = 4000,DIC=F,n.thin = 1)
# Estimates
d.AB.saramago <- -jagsmodelIPDADnetmetareg$BUGSoutput$summary['LOR[4,1]','mean']
var.d.AB.saramago<- jagsmodelIPDADnetmetareg$BUGSoutput$summary['LOR[4,1]','sd']^2
d.AC.saramago <- -jagsmodelIPDADnetmetareg$BUGSoutput$summary['LOR[4,2]','mean']
var.d.AC.saramago<- jagsmodelIPDADnetmetareg$BUGSoutput$summary['LOR[4,2]','sd']^2
d.BC.saramago <- jagsmodelIPDADnetmetareg$BUGSoutput$summary['LOR[2,1]','mean']
var.d.BC.saramago<- jagsmodelIPDADnetmetareg$BUGSoutput$summary['LOR[2,1]','sd']^2
#######
# Plot
######
plotdat <- data_frame(
id = 1:10,
Comparison = factor(c(rep(1,4), 2, 2,rep(3,4)),
labels = c("Dimethyl. vs. Placebo", "Glatiramer. vs. Placebo", "Glatiramer. vs. Dimethyl.")),
Estimate = c( d.AB.saramago,d.AB.MAIC, d.AB.STC, d.AB.NAIVE,
d.AC.saramago,d.AC.NAIVE,
d.BC.saramago,d.BC.MAIC, d.BC.STC, d.BC.NAIVE),
var = c( var.d.AB.saramago,var.d.AB.MAIC, var.d.AB.STC, var.d.AB.NAIVE,
var.d.AC.saramago,var.d.AC.NAIVE,
var.d.BC.saramago,var.d.BC.MAIC, var.d.BC.STC, var.d.BC.NAIVE),
lo = Estimate + qnorm(0.025) * sqrt(var),
hi = Estimate + qnorm(0.975) * sqrt(var),
method = c( '3LH-MNR',"MAIC", "STC", "Unadjusted",
'3LH-MNR',"Unadjusted",
'3LH-MNR',"MAIC", "STC", "Unadjusted")
)
ggplot(aes(x = Estimate, y = id, col = method, shape = method), data = plotdat) +
geom_vline(xintercept = 0, lty = 2) +
geom_point(size = 2) +
geom_segment(aes(y = id, yend = id, x = lo, xend = hi), na.rm = TRUE) +
xlab("Estimate (Log OR)") +
facet_grid(Comparison~., switch = "y", scales = "free_y", space = "free_y") +
scale_y_reverse(name = "", breaks = NULL, expand = c(0, 0.6))
##############
# Multinma implemntation
##############
library(multinma)
library(dplyr)
library(tidyr)
library(ggplot2)
options(mc.cores = parallel::detectCores())
# libraries
library(devtools)
library(R2jags)
install_github('htx-r/GenericModelNMA',force = T)
library(GenericModelNMA)
# load data
source('cleanData.R') # contains the FOUR different datasets
# prepare the data
# rct.ipd <- rct.ipd %>% mutate(
# complete = with(rct.ipd,complete.cases(TRT01A, RELAPSE2year, AGE)))
# rct.ipd <- filter(rct.ipd, complete)
rct.ipd <-MSrelapse
rct.ad<-rct.ad[which(rct.ad$study=="Bornstein" | rct.ad$study=="Johnson"),]
rct.ipd$RELAPSE2year <- as.numeric(rct.ipd$RELAPSE2year)-1
rct.ad$age_mean <- c(34.3,34.3,30,30)
rct.ad$age_sd <- c(6.5,6.5,6,6)
#rct.ipd$TRT01A <- factor(rct.ipd$TRT01A)
# set the network
rrms_net <- combine_network(
set_ipd(rct.ipd,
study = STUDYID,
trt = TRT01A,
r = RELAPSE2year,
trt_ref = "Placebo"),
set_agd_arm(rct.ad,
study = study,
trt = treat,
r = r,
n = n,
trt_ref = "Placebo")
)
# plot the network
plot(rrms_net, weight_nodes = TRUE, weight_edges = TRUE) +
ggplot2::theme(legend.position = "bottom", legend.box = "vertical")
# integration
rrms_net <- add_integration(rrms_net,
AGE = distr(qnorm, mean = age_mean, sd = age_sd),
n_int = 1000
)
# fit multinma model
rrms_fit_FE <- nma(rrms_net,
trt_effects = "fixed",
link = "logit",
likelihood = "bernoulli2",
regression = ~.trt+AGE,
prior_intercept = normal(scale = 10),
prior_trt = normal(scale = 10),
prior_reg = normal(scale = 10),
init_r = 0.1,
QR = TRUE
)
#> Note: Setting "PBO" as the network reference treatment.
#
as.data.frame(summary(rrms_fit_FE))
# AGE distribution per study
library(dplyr)
library(ggplot2)
rct.ipd2 <- rct.ipd[,c('STUDYID','RELAPSE2year','AGE','TRT01A')]
rct.nrs.ipd <- rbind.data.frame(rct.ipd2,nrs.ipd)
rct.ad1 <- data.frame(STUDYID='Bornstein',AGE=rnorm(50,34.3,6.5))
rct.ad2 <- data.frame(STUDYID='Johnson',AGE=rnorm(251,30,6))
plotdat <- rbind.data.frame(rct.nrs.ipd[,c('STUDYID','AGE')],rct.ad1,rct.ad2)
plotdat %>%
ggplot( aes(x=AGE, fill=STUDYID)) +
geom_histogram( color="#e9ecef", alpha=0.6, position = 'identity',binwidth=2) +
scale_fill_manual(values=c("#69b3a2", "#404080","salmon4","lightgreen",'red','blue')) +
theme_minimal() +
labs(fill="")+
facet_wrap(~STUDYID)
#+
# geom_vline(xintercept = c(34.3,34.3+2*6.5,34.3-2*6.5), col='red',lwd=2,lty=c(1,2,2))+
# geom_vline(xintercept = c(30,30+2*6,30-2*6), col='green',lwd=2,lty=c(1,2,2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.