R/selectmulti_is.R

Defines functions normulticlassispart

Documented in normulticlassispart

#' @title Multi-class (N>1) Metabolomic Study with dataset with Internal Standards (ISs).
#' @description This function handles (1) normalizing the multi-class metabolomic
#' data with Internal Standards (ISs) using 48 methods/strategies,
#' (2) evaluating the normalization performances from multiple perspectives,
#' and (3) enabling the systematic comparison among all methods/strategies
#' based on a comprehensive performance ranking.
#' @param fileNameI Matrix: row is samples, column is metabolites. The first column is the binary labels. Please find the detail information of the file format from those six sample
#' files in the working directory (in github) “idrblab/METNOR/data”
#' @param IS  Input the Column of Internal Standards. For example,
#' the replacement of IS to 2,6,9,n indicates that the metabolites in the 2st, 6th, 9th, and nth columns of in
#' your input dataset Input-Dataset.csv should be considered as the ISs or quality control metabolites.
#' If there is only one IS, the column number of this IS should be listed
#' If there are multiple ISs, the column number of all ISs should be listed and
#' separated by comma (,)
#' @param selectFile Input the name of your prefered strategies. Sample data of this data type is in the working directory (in github) “idrblab/METNOR/data/selectdataS.rda”.
#' @import DiffCorr affy vsn DT ropls
#' @import e1071 AUC impute MetNorm
#' @import ggsci timecourse multiROC dummies
#' @import ggplot2 ggord ggfortify usethis
#' @import ggrepel ggpubr sampling crmn
#' @importFrom grid grid.draw
#' @rawNamespace import(limma, except=.__C__LargeDataObject)
#' @importFrom grDevices dev.off png rainbow rgb colorRampPalette pdf
#' @importFrom VennDiagram venn.diagram
#' @import futile.logger
#' @importFrom graphics abline close.screen legend mtext par points screen split.screen symbols text title
#' @importFrom stats anova as.formula cor dnorm kmeans lm loess loess.control mad median model.matrix na.omit pf pnorm qnorm qt quantile rnorm runif sd var
#' @importFrom utils combn read.csv write.csv write.table
#' @examples seleallranks_is <- normulticlassispart(fileNameI = multi_is_data,
#' IS = "3,4,5", selectFile = selectdataS)
#' @export normulticlassispart

normulticlassispart <- function(fileNameI, IS, selectFile){
  cat("METNOR is Running ...","\n")
  cat("\n")
  #imputation---------------------------------------------------------------------------------
  consistency_M <-  function(fold = 3, top = 20) {

    folds <- fold

    DEG <- list()
    for (i in 1:folds) {

      com.x <- test_data[test.fold[[i]], ]

      com.x[sapply(com.x, simplify = 'matrix', is.infinite)] <- 0

      X_matrix <- as.data.frame(com.x[,-1])
      y_label <- as.factor(com.x[,1])

      pos_filter <- OPLSDA_C(X_matrix, y_label)

      DEG[[i]] <- pos_filter
    }
    names(DEG) <- LETTERS[1:folds]

    top.n <-top # Extracting the top n genes.
    DEG.list <- DEG
    for (g in 1:length(DEG.list)) {
      DEG.list[[g]] <- DEG.list[[g]][1:top.n]
    }

    # Calculating consistency score:

    setlist <- DEG.list


    return(setlist) # consistense score

  }
  #imputation---------------------------------------------------------------------------------
  imput<-function(filter_data2,n){
    matrix<-switch(
      n,
      t(ImputMean(filter_data2)),#
      t(ImputMedian(filter_data2)),#
      t(back(filter_data2)),#
      t(impute.knn(as.matrix(t(filter_data2)), k = 10,rng.seed = 1024)$data)#
    )
    return(matrix)
  }

  im_nam<-c(
    "MEI",
    "MDI",
    "HAM",
    "KNN"
  )

  #Transformation---------------------------------------------------------------------------------
  trans<-function(data,n){
    matrix<-switch(
      n,
      Cube_root(data),
      log2(data),
      data
    )
    return(matrix)
  }

  t_nam<-c(
    "CUT",
    "LOG",
    "NON"
  )

  #normalization for with IS---------------------------------------------------------------------------------
  norm_IS<-function(train_data_nor,n){
    matrix<-switch(
      n,
      t(SIS(train_data_nor, as.numeric(nomis_name))),#1
      t(NOMIS(train_data_nor, as.numeric(nomis_name))),#2
      t(CCMN(train_data_nor, as.numeric(nomis_name))),#3
      t(RUVRand(train_data_nor, as.numeric(nomis_name)))#4
    )
    return(matrix)
  }
  n_norm_IS<-c(
    "SIS",
    "NOMIS",
    "CCMN",
    "RUV-random"
  )
  #-----------------------------------------------------------------

  ###################################################Step-2 调用数据
  internal_standard <- IS
  data_q <- fileNameI

  data2 <- data_q[, -c(1:2)]
  data4 <- data_q[, 1:2]
  data2[data2 == 0] <- NA # the zero value has been replaced by NA.

  #filtering-----------------------------------------------------------------------------
  col_f <- apply(data2, 2, function(x) length(which(is.na(x)))/length(x))
  if (length(which(col_f >0.2))==0){
    data2_f <- data2
  }else {
    data2_f <- data2[, -which(col_f > 0.2)]
  }
  filter_data2 <- data2_f

  aftetable<-list()
  normal_data <- list()
  train_data_Preprocess3 <- NULL

  data_p <- selectFile

  for(p in 1:nrow(data_p)){
    #p = 2
    datap1 <- data_p[p,2]
    datap2 <- as.character(datap1)
    datap3 <- unlist(strsplit(datap2,"-"))

    impt <- datap3[1]; trsf <- datap3[2]; nmals <- datap3[3]

    message(sprintf("impt:%s; ", impt),sprintf("trsf:%s; ", trsf),sprintf("nmals:%s; ", nmals))


  for (i in as.numeric(impt)){
    #for (i in 1:4){

    after.table <- NULL
    imput_m <- try(imput(filter_data2,i))
    if(class(imput_m)=="try-error")
    { next }
    train_data<- t(imput_m)

    for (j in as.numeric(trsf)){
      #for (j in 1:3){

      train_data_Transformation3<-try(trans(train_data,j))
      if(class(train_data_Transformation3)=="try-error")
      { next }

      train_data_Transformation3[is.infinite(data.matrix(train_data_Transformation3))]<-NA
      after.table <- cbind(data4, t(train_data_Transformation3))

      train_data_tr<-after.table[,-1]
      sampleLabel <- as.character(after.table[, 2])

      for (k in as.numeric(nmals)){
        #Data format:(1)Matrix: row is samples, column is metabolites.(The first column is the binary labels.)
        ###            (2)nc is the column order of QC metabolites or IS.

        #nomis_name=c(2,3,4)###################################

        is_name <- as.numeric(unlist(strsplit(as.character(internal_standard),",")))

        nomis_name <- is_name
        train_data_Preprocess3 <-try(norm_IS(train_data_tr,k))
        if(class(train_data_Preprocess3)=="try-error")
        { next }
        normalized_data3 <- train_data_Preprocess3

        eva.data3 <- cbind(after.table[, 1:2], t(normalized_data3))
        eva.data3 <- eva.data3[, -1]
        eva.data3 <- as.data.frame(eva.data3)
        rownames(eva.data3) <- after.table[, 1]
        colnames(eva.data3)[1] <- "Group"
        eva_data3<-eva.data3

        normal_data[[paste(im_nam[i],t_nam[j],n_norm_IS[k],sep="+")]] <- eva_data3
        eva_data3 <- NULL
        aftetable[[paste(im_nam[i],t_nam[j],n_norm_IS[k],sep="+")]] <- after.table

      }
    }
  }
}
  #length(normal_data)
  nanmes_right<-names(normal_data)

  Fpmad<-list()
  Fpurity<-list()
  Fscore<-list()
  Fauc<-list()

  for (mmm in 1:length(normal_data)){

    name <- nanmes_right

    ###Fpmad-------------------------------------------------------------------------
    n_data <- as.data.frame(normal_data[mmm],col.names=NULL)
    n_data <- as.matrix(n_data)
    if(sum(is.na(n_data))<length(n_data)/3){
      eva_data3<-as.data.frame(normal_data[mmm],col.names=NULL)
    }else{next}

    eva_data3_f<-eva_data3

    eva_data3 <- eva_data3_f

    ###

    pmad3N.log <- eva_data3
    pmad3N <- try(PMAD(pmad3N.log))
    if(class(pmad3N)=="try-error")
    { next }

    Fpmad[names(normal_data[mmm])]<-mean(pmad3N)

    names(after.table)[1] <- "Group"

    pmad3R.log <- after.table[,-1]
    pmad3R <- try(PMAD(pmad3R.log))
    if(class(pmad3R)=="try-error")
    { next }

    C3 <- cbind(pmad3R, pmad3N); colnames(C3) <- c("Before", "After")

    cat(paste("Assessing Method" , paste(mmm,":",sep=""), name[mmm]),"\n")

    cat("   Criterion Ca (reduction of intragroup variation) ...","\n")
    dir.create(paste0("OUTPUT-NOREVA-Criteria.Ca"))
    pdf(file=paste("./OUTPUT-NOREVA-Criteria.Ca/Criteria.Ca-",names(normal_data[mmm]),".pdf",sep=""))
    try(boxplot(C3, main="PMAD - Intragroup",  notch= TRUE,col = c("#24814C","#FF9B00"), density=20, medcol=c("#437A8B","#DC143C"),cex=0.3, cex.axis=1.1,las=1,frame.plot=F, ylab="PMAD"))
    dev.off()
    # 2. Fpurity-------------------------------------------------------------------------
    sink(file=paste("OUTPUT-METNOR-Record",".txt",sep=""))
    data_kmeans <- eva_data3
    data_kmeans[sapply(data_kmeans, simplify = 'matrix', is.na)] <- 0

    eva_data3_f<-data_kmeans
    del_col <- NULL
    for (m in 1:dim(eva_data3_f)[2]){
      if (sum(eva_data3_f[,m]==0)==nrow(eva_data3_f)) {
        del_col <- c(del_col,m)
      }
    }

    if (is.null(del_col)){
      eva_data3_f <- eva_data3_f
    }else{
      eva_data3_f <- eva_data3_f[,-del_col]
    }

    X_matrix<-eva_data3_f[,-1]
    Group <- as.factor(eva_data3_f$Group)
    pos_filter <- try(OPLSDA_test(X_matrix, Group, cutoff = 0.8))
    if(class(pos_filter)=="try-error")
    { next }

    DEG <- cbind(Group,X_matrix[, pos_filter])
    data_kmeans<-DEG

    clusters <- length(unique(data_kmeans[, 1]))
    obj_kmeans <- try(kmeans(data_kmeans[,-1], centers = clusters, nstart = 10,iter.max = 6))
    if(class(obj_kmeans)=="try-error")
    { next }

    groups <- factor(data_kmeans[, 1], levels = unique(data_kmeans[,1]))
    unique.groups <- levels(groups)
    cols <- 1:length(unique(data_kmeans[, 1]))
    box_cols <- NULL

    for (ii in 1:length(data_kmeans[, 1])) {

      box_cols[ii] <- cols[match(data_kmeans[, 1][ii],unique.groups)]
    }

    true_label<-box_cols

    pre<-obj_kmeans$cluster
    tru<-true_label
    tmatrix<-table(pre,tru)

    label<-tru
    result<-pre

    accuracy<-try(purity(result,label))
    if(class(accuracy)=="try-error")
    { next }

    Fpurity[names(normal_data[mmm])]<-accuracy

    unique.groups <- levels(as.factor(data_kmeans[,1]))
    T_number <- length(unique.groups)
    #cols <- rainbow(length(unique.groups))
    cols <- colorRampPalette(c("#55a51c", "#ea7125", "#8f2bbc","#00b1c1"))(length(unique.groups))
    box_cols <- c(rep(NA, length(rownames(data_kmeans))))

    for (ii in 1:length(data_kmeans[, 1])) {
      box_cols[ii] <- cols[match(data_kmeans[, 1][ii],unique.groups)]
    }

    data_kmeans <- as.data.frame(data_kmeans)
    data_kmeans$Color<-box_cols

    data_kmeans$T_label <- data_kmeans[, 1]

    sink()

    cat("   Criterion Cb (differential metabolic analysis) ...","\n")

    sink(file=paste("OUTPUT-METNOR-Record",".txt",sep=""))
    #sink(file=paste("OUTPUT-NOREVA-Record",".txt",sep=""))
    dir.create(paste0("OUTPUT-NOREVA-Criteria.Cb"))
    pdf(file=paste("./OUTPUT-NOREVA-Criteria.Cb/Criteria.Cb-",names(normal_data[mmm]),".pdf",sep=""))
    classcolor <- NA
    for (i in 1:length(unique(obj_kmeans$cluster))){
      majority <- obj_kmeans$cluster[obj_kmeans$cluster==i]
      majority1 <- names(majority)
      majority2 <- data_kmeans[majority1,"Color"]
      majority3 <- unique(majority2)[which.max(tabulate(match(majority2, unique(majority2))))]
      majority4 <- as.character(majority3)
      classcolor[i] <- majority4
    }

    try(print(autoplot(obj_kmeans,
                       data = data_kmeans,
                       frame = TRUE,shape=1)+
                geom_text_repel(aes(label=data_kmeans$T_label),color=data_kmeans$Color,size=3)+
                theme(legend.position="none",panel.background = element_blank(),axis.title.x=element_text(angle=0, size=12,color="black"),axis.text.x=element_text(angle=0, size=13,color="black"),axis.title.y=element_text(size=12,color="black"),axis.text.y=element_text(size=13,color="black"),panel.border = element_rect(fill='transparent', color='black'))+
                geom_point(color=data_kmeans$Color,size=3)+
                #scale_fill_manual(values = c("#BC4D70", "#00B1C1", "#55A51C")) +
                #scale_color_manual(values = c("#BC4D70", "#00B1C1", "#55A51C"))
                scale_fill_manual(values = classcolor) +
                scale_color_manual(values = classcolor)))
    dev.off()

    # 3. Consistency -------------------------------------------------------- #

    test_data <- eva_data3
    test_data[sapply(test_data, simplify = 'matrix',is.nan)] <- 0

    test_data <- test_data[order(test_data$Group),]

    number_labels <- test_data$Group
    folds <- 3
    test.fold <- list()

    test.fold1 <- strata(c("Group"),size=(as.numeric(table(test_data$Group))/3),method="srswor",data=test_data)[,2]
    test.fold[[1]] <- test.fold1

    data.2 <- test_data[-test.fold1,]

    test.fold2 <- strata(c("Group"),size=(as.numeric(table(test_data$Group))/3),method="srswor",data=data.2)[,2]
    test.fold2 <- match(row.names(data.2)[test.fold2],row.names(test_data))

    test.fold[[2]] <- test.fold2

    test.fold[[3]] <- (1:nrow(test_data))[-c(test.fold1,test.fold2)]

    DEG.list <- try(consistency_M(3, 70))
    if(class(DEG.list)=="try-error")
    { next }

    CW_value <- try(CWvalue(DEG.list,Y=(ncol(eva_data3)-1),n=length(DEG.list[[1]])))
    if(class(CW_value)=="try-error")
    { next }

    Fscore[names(normal_data[mmm])]<-CW_value

    setlist3 <- DEG.list
    #OLlist3 <- try(overLapper(setlist = setlist3, sep="_", type = "vennsets"))
    #if(class(OLlist3)=="try-error")
    #{ next }

    #counts <- list(sapply(OLlist3$Venn_List, length), sapply(OLlist3$Venn_List, length))

    sink()

    #cat("   Criterion Cc (consistency in marker discovery) ...","\n")

    cat("   Criterion Cc (consistency in marker discovery) ...","\n")
    flog.threshold(futile.logger::ERROR, name = "VennDiagramLogger")
    venn.plot <- try(venn.diagram(x = setlist3,
                                  filename = NULL,
                                  #output=TRUE,
                                  #output = TRUE ,
                                  #imagetype="png" ,
                                  #height = 480 ,
                                  #width = 480 ,
                                  #shape = "ellipse",
                                  main = "Venn Diagram",
                                  resolution = 360,
                                  compression = "lzw",
                                  lwd = 2,
                                  col=c("#800080", '#31BA6E','#FFC83F'),
                                  #col="white",
                                  fill = c(alpha("#800080",0.3), alpha('#31BA6E',0.3), alpha('#FFC83F',0.3)),
                                  cex = 2,
                                  fontfamily = "sans",
                                  cat.cex = 2,
                                  cat.default.pos = "outer",
                                  cat.pos = c(-27, 27, 135),
                                  cat.dist = c(0.055, 0.055, 0.085),
                                  cat.fontfamily = "sans",
                                  cat.col = c("#800080", '#31BA6E','#FFC83F'),
                                  rotation = 1))

    dir.create(paste0("OUTPUT-NOREVA-Criteria.Cc"))
    pdf(file=paste("./OUTPUT-NOREVA-Criteria.Cc/Criteria.Cc-",names(normal_data[mmm]),".pdf",sep=""))
    try(grid.draw(venn.plot))
    dev.off()
    # -- 4. AUC value --------------------------------------------------------------------------------- #

    set.seed(3)

    X <- X_matrix[, pos_filter]
    y <- as.factor(Group)

    # cross-validated SVM-probability plot
    folds <- 5

    test.fold <- split(sample(1:length(y)), 1:folds) #ignore warning
    all.pred.tables <-  lapply(1:folds, function(i) {
      test <- test.fold[[i]]
      Xtrain <- X[-test, ]
      ytrain <- as.factor(y[-test])

      sm <- try(svm(Xtrain, ytrain, cost = as.numeric(100),probability = TRUE)) # some tuning may be needed

      prob.benign <- attr(predict(sm, X[test,], prob = TRUE), "probabilities")[, 2]
      data.frame(ytest = y[test], ypred = prob.benign) # returning this
    })

    full.pred.table <- try(do.call(rbind, all.pred.tables))
    if(class(full.pred.table)=="try-error")
    { next }

    svm_para3 <- c(1, 5, as.numeric(1))

    roc_data3 <- full.pred.table

    auc.value <- try(auc(roc(full.pred.table[, 2], full.pred.table[, 1])))
    if(class(auc.value)=="try-error")
    { next }

    Fauc[names(normal_data[mmm])]<-auc.value

    cat("   Criterion Cd (classification accuracy) ...","\n")
    cat("\n")
    dir.create(paste0("OUTPUT-NOREVA-Criteria.Cd"))
    pdf(file=paste("./OUTPUT-NOREVA-Criteria.Cd/Criteria.Cd-",names(normal_data[mmm]),".pdf",sep=""))
    try(plot(roc(full.pred.table[, 2], full.pred.table[, 1]), col = "red"))
    dev.off()
  }

  result<-dplyr::bind_rows("Precision"=unlist(Fpmad),"Cluster_accuracy"=unlist(Fpurity),"Reproducibility"=unlist(Fscore),"Classification"=unlist(Fauc),.id = "id")
  result1<-t(result)
  colnames(result1)<-result1["id",]
  result2<-result1[-1,]
  result2<-data.frame(result2,check.names=FALSE)

  for(i in 1:dim(result2)[2]){result2[,i]=as.numeric(as.character(result2[,i]))}

  Rank<-apply(result2, 2, function(x){rank(-x,ties.method="min",na.last = "keep")})

  if(length(grep("Precision",colnames(Rank)))==1){
    Rank[,"Precision"]<-rank(as.numeric(as.character(result2[,"Precision"])),ties.method="min",na.last = "keep")
  }else{
    Rank<-Rank
  }

  Rank_revision<-apply(Rank, 2, function(x){x[is.na(x)]<-nrow(Rank);return(x)})
  Ranksum0<-apply(Rank_revision, 1, sum)
  Rankres0<-cbind("OverallRank"=Ranksum0,Rank_revision)

  zuihou0<-cbind("Rank"=Rankres0,"Value"=result2)

  zuihou1<-zuihou0[order(Rankres0[,"OverallRank"],decreasing = FALSE),]
  zuihou1[,1]<-rank(zuihou1[,1],ties.method="min")
  zuihou2<-zuihou1
  zuihou3 <- zuihou2
  zuihou3 <- round(zuihou3,4)
  colnames(zuihou3) <- c("Overall-Rank","Criteria.Ca-Rank","Criteria.Cb-Rank","Criteria.Cc-Rank","Criteria.Cd-Rank","Criteria.Ca-Value","Criteria.Cb-Value","Criteria.Cc-Value","Criteria.Cd-Value")

  ##########picture######################################

  data_color<-as.data.frame(zuihou2[,-c(1:5)])

  data_color["Value.Precision"][data_color["Value.Precision"]>=0.7]<-1
  data_color["Value.Precision"][data_color["Value.Precision"]<0.7&data_color["Value.Precision"]>=0.3]<-8
  data_color["Value.Precision"][data_color["Value.Precision"]<0.3]<-10

  data_color["Value.Cluster_accuracy"][data_color["Value.Cluster_accuracy"]>=0.8]<-10
  data_color["Value.Cluster_accuracy"][data_color["Value.Cluster_accuracy"]<0.8&data_color["Value.Cluster_accuracy"]>=0.5]<-8
  data_color["Value.Cluster_accuracy"][data_color["Value.Cluster_accuracy"]<0.5]<-1

  data_color["Value.Reproducibility"][data_color["Value.Reproducibility"]>=0.3]<-10
  data_color["Value.Reproducibility"][data_color["Value.Reproducibility"]<0.3&data_color["Value.Reproducibility"]>=0.15]<-8
  data_color["Value.Reproducibility"][data_color["Value.Reproducibility"]<0.15]<-1

  data_color["Value.Classification"][data_color["Value.Classification"]>=0.9]<-10
  data_color["Value.Classification"][data_color["Value.Classification"]<0.9&data_color["Value.Classification"]>=0.7]<-8
  data_color["Value.Classification"][data_color["Value.Classification"]<0.7]<-1

  data_color_m<-as.data.frame(data_color)
  Ranksum_color<-apply(data_color_m, 1, sum)
  data_color_m01<-cbind( "rank_color"=Ranksum_color,data_color_m)
  data_color_m02<-data_color_m01[order(data_color_m01[,"rank_color"],decreasing =T),]
  data_color_m<-data_color_m02

  row<-rownames(data_color_m)
  nfina<-nchar(row[1])
  nstart<-nchar(row[1])-6
  result <- substring(row, nstart,nfina)

  data_heat<-data_color_m[,-1]
  colnames(data_heat) <- c("Criterion Ca: Reduction of Intragroup Variation","Criterion Cb: Differential Metabolic Analysis","Criterion Cc: Consistency in Marker Discovery","Criterion Cd: Classification Accuracy")

  rank_result <- zuihou3[match(row.names(data_heat),row.names(zuihou3)),]
  rank_result[,1] <- 1:nrow(rank_result)

  write.csv(rank_result,file = "./OUTPUT-NOREVA-Overall.Ranking.Data.csv")
  cat("\n")
  cat("*************************************************************************","\n")
  cat("Congratulations! Assessment Successfully Completed!","\n")
  cat("Thanks for Using METNOR. Wish to See You Soon ...","\n")
  cat("*************************************************************************","\n")
  cat("\n")
  #return(rank_result)
}
idrblab/NOREVA2020 documentation built on Sept. 14, 2020, 12:04 a.m.