## Export: inla.collect.results
##! \name{inla.collect.results}
##! \alias{inla.collect.results}
##! \alias{collect.results}
##! \title{Collect results from a inla-call}
##! \description{\code{inla.collect.results} collect results from a inla-call}
##! \usage{
##! inla.collect.results(
##! results.dir,
##! control.results = inla.set.control.results.default(),
##! debug=FALSE,
##! only.hyperparam=FALSE,
##! file.log = NULL,
##! file.log2 = NULL)
##!}
##! \arguments{
`inla.collect.results` =
function(
##! \item{results.dir}{The directory where the results of the inla run are stored}
results.dir,
##! \item{control.results}{a list of parameters controlling the
##! output of the function; see \code{?control.results}}
control.results = inla.set.control.results.default(),
##! \item{debug}{Logical. If \code{TRUE} some debugging information are printed}
debug=FALSE,
##! \item{only.hyperparam}{Binary variable indicating wheather only the
##! results for the hyperparameters should be collected}
only.hyperparam=FALSE,
##! \item{file.log}{Character. The filename, if any, of the logfile for
##! the internal calculations}
file.log = NULL,
##! \item{file.log2}{Character. The filename, if any, of the logfile2 for
##! the internal calculations}
file.log2 = NULL)
{
##! }
##! \value{ The function returns an object of class \code{"inla"}, see the
##! help file for \code{inla} for details.}
##!
##! \details{This function is mainly used inside \code{inla}
##! to collect results after running the inla
##! function. It can also be used to collect results into R after having
##! runned a inla section outside R. }
if (is.na(file.info(results.dir)$isdir) ||
!file.info(results.dir)$isdir) {
stop(paste("This is not a directory: ", results.dir, "\n"))
}
filename = paste(results.dir, "/.ok", sep="")
res.ok = file.exists(filename)
if (!res.ok) {
## try this one instead
results.dir.new = paste(results.dir, "/results.files", sep="")
filename = paste(results.dir.new, "/.ok", sep="")
res.ok = file.exists(filename)
if (res.ok) {
if (debug) {
cat(paste("inla.collect.results: retry with directory", results.dir.new, "\n"))
}
return (inla.collect.results(results.dir.new,
control.results = control.results,
debug = debug,
only.hyperparam = only.hyperparam,
file.log = file.log,
file.log2 = file.log2))
} else {
## neither directories contain the file /.ok, then we
## assume the inla-program has crashed
inla.inlaprogram.has.crashed()
}
}
if (!only.hyperparam) {
res.fixed = inla.collect.fixed(results.dir, debug)
res.lincomb = inla.collect.lincomb(results.dir, debug, derived=FALSE)
res.lincomb.derived = inla.collect.lincomb(results.dir, debug, derived = TRUE)
res.dic = inla.collect.dic(results.dir, debug)
res.cpo.pit = inla.collect.cpo(results.dir, debug)
res.po = inla.collect.po(results.dir, debug)
res.waic = inla.collect.waic(results.dir, debug)
res.random = inla.collect.random(results.dir, control.results$return.marginals.random, debug)
res.predictor = inla.collect.predictor(results.dir, control.results$return.marginals.predictor, debug)
res.spde2.blc = inla.collect.spde2.blc(results.dir, control.results$return.marginals.random, debug)
res.spde3.blc = inla.collect.spde3.blc(results.dir, control.results$return.marginals.random, debug)
file=paste(results.dir,.Platform$file.sep,"neffp",.Platform$file.sep,"neffp.dat", sep="")
neffp = matrix(inla.read.binary.file(file), 3, 1)
rownames(neffp) = inla.trim(c("Expectected number of parameters",
"Stdev of the number of parameters",
"Number of equivalent replicates"))
} else {
res.fixed=NULL
res.lincomb = NULL
res.lincomb.derived = NULL
res.dic=NULL
res.cpo.pit =NULL
res.po = NULL
res.waic = NULL
res.random=NULL
res.predictor =NULL
res.spde2.blc = NULL
res.spde3.blc = NULL
neffp =NULL
}
res.mlik = inla.collect.mlik(results.dir, debug)
res.q = inla.collect.q(results.dir, debug)
res.graph = inla.collect.graph(results.dir, debug)
res.offset = inla.collect.offset.linear.predictor(results.dir, debug)
##get the hyperparameters
theta.mode = inla.read.binary.file(paste(results.dir,.Platform$file.sep,".theta_mode", sep=""))[-1]
x.mode = inla.read.binary.file(paste(results.dir,.Platform$file.sep,".x_mode", sep=""))[-1]
hgid = readLines(paste(results.dir,.Platform$file.sep,".hgid", sep=""))
lfn.fnm = paste(results.dir,.Platform$file.sep,"linkfunctions.names", sep="")
if (file.exists(lfn.fnm)) {
linkfunctions.names = readLines(lfn.fnm)
fp = file(paste(results.dir,.Platform$file.sep,"linkfunctions.link", sep=""), "rb")
n = readBin(fp, integer(), 1)
idx = readBin(fp, double(), n)
ok = which(!is.nan(idx))
idx[ok] = idx[ok] + 1
close(fp)
linkfunctions = list(names = linkfunctions.names, link = as.integer(idx))
} else {
linkfunctions = NULL
}
if (length(theta.mode)>0) {
res.hyper = inla.collect.hyperpar(results.dir, debug)
##get the joint (if printed)
alldir = dir(results.dir)
if (length(grep("joint.dat", alldir))==1) {
if (debug) {
print("inla.collect.joint hyperpar")
}
fnm = paste(results.dir,"/joint.dat", sep="")
if (file.info(fnm)$size > 0) {
joint.hyper = read.table(fnm)
} else {
joint.hyper = NULL
}
} else {
joint.hyper = NULL
}
} else {
res.hyper = NULL
joint.hyper = NULL
}
logfile = list(logfile = c(inla.collect.logfile(file.log, debug)$logfile,
"", paste(rep("*",72),sep="",collapse=""), "",
inla.collect.logfile(file.log2, debug)$logfile))
misc = inla.collect.misc(results.dir, debug)
theta.tags = NULL
mode.status = NA
if (!is.null(misc)) {
## put also theta.mode in here
misc$theta.mode = theta.mode
## we need theta.tags for later usage
if (!is.null(misc$theta.tags)) {
theta.tags = misc$theta.tags
}
mode.status = misc$mode.status
if (!is.null(misc$lincomb.derived.correlation.matrix)) {
if (!is.null(res.lincomb.derived)) {
id = res.lincomb.derived$summary.lincomb.derived$ID
tag = rownames(res.lincomb.derived$summary.lincomb.derived)
R = misc$lincomb.derived.correlation.matrix
rownames(R) = colnames(R) = tag[id]
misc$lincomb.derived.correlation.matrix = R
} else {
misc$lincomb.derived.correlation.matrix = NULL
}
}
if (!is.null(misc$lincomb.derived.covariance.matrix)) {
if (!is.null(res.lincomb.derived)) {
id = res.lincomb.derived$summary.lincomb.derived$ID
tag = rownames(res.lincomb.derived$summary.lincomb.derived)
R = misc$lincomb.derived.covariance.matrix
rownames(R) = colnames(R) = tag[id]
misc$lincomb.derived.covariance.matrix = R
} else {
misc$lincomb.derived.covariance.matrix = NULL
}
}
## also put the linkfunctions here
misc$linkfunctions = linkfunctions
if (!is.null(linkfunctions)) {
## a better name
misc$family = linkfunctions$link
}
}
## add the names of the theta's here, as they are available.
if (!is.null(misc) && !is.null(joint.hyper)) {
colnames(joint.hyper) = c(misc$theta.tags, "Log posterior density")
}
names(theta.mode) = theta.tags
res = c(res.fixed, res.lincomb, res.lincomb.derived, res.mlik,
list(cpo=res.cpo.pit), list(po = res.po), list(waic = res.waic),
res.random, res.predictor, res.hyper,
res.offset, res.spde2.blc, res.spde3.blc, logfile,
list(misc = misc,
dic=res.dic, mode = list(theta = theta.mode, x = x.mode,
theta.tags = theta.tags, mode.status = mode.status,
log.posterior.mode = misc$log.posterior.mode),
neffp=neffp,
joint.hyper=joint.hyper, nhyper=length(theta.mode),
version = list(inla.call = hgid, inla.call.builtin = hgid, R.INLA=inla.version("hgid"))),
list(Q=res.q),
res.graph, ok = res.ok)
class(res) = "inla"
if (inla.getOption("internal.experimental.mode")) {
if (debug)
print("...Fix marginals")
## set the inla.marginal class to all the marginals, and add tag
## used for plotting. all these have two levels:
idxs = grep("marginals[.](fixed|linear[.]predictor|lincomb[.]derived|lincomb|hyperpar|fitted[.]values)", names(res))
if (length(idxs) > 0) {
for(idx in idxs) {
if (!is.null(res[[idx]])) {
name.1 = names(res)[idx]
attr(res[[idx]], "inla.tag") = name.1
class(res[[idx]]) = "inla.marginals"
if (length(res[[idx]])>0) {
for(i in 1:length(res[[idx]])) {
name.2 = names(res[[idx]])[i]
if (!is.null(res[[idx]][[i]])) {
attr(res[[idx]][[i]], "inla.tag") = paste(name.1, name.2)
class(res[[idx]][[i]]) = "inla.marginal"
}
}
}
}
}
}
if (debug)
print("...Fix marginals 1")
## all these have three levels:
idxs = grep("marginals[.]random", names(res))
if (length(idxs) > 0) {
for(idx in idxs) {
if (!is.null(res[[idx]])) {
name.1 = names(res)[idx]
name.2 = names(res[[idx]])
if (length(res[[idx]])>0) {
for(i in 1:length(res[[idx]])) {
name.3 = name.2[i]
name.4 = names(res[[idx]][[i]])
attr(res[[idx]][[i]], "inla.tag") = paste(name.1, name.3)
class(res[[idx]][[i]]) = "inla.marginals"
if (length(res[[idx]][[i]]) > 0) {
for(j in 1:length(res[[idx]][[i]])) {
name.5 = name.4[j]
if (!is.null(res[[idx]][[i]][[j]])) {
attr(res[[idx]][[i]][[j]], "inla.tag") = paste(name.1, name.3, name.5)
class(res[[idx]][[i]][[j]]) = "inla.marginal"
}
}
}
}
}
}
}
}
if (debug)
print("...Fix marginals done.")
}
return(res)
}
## disable this for the moment
inla.internal.experimental.mode = FALSE
`inla.collect.misc` = function(dir, debug = FALSE)
{
d = paste(dir,"/misc", sep="")
d.info = file.info(d)$isdir
if (debug)
print(paste("collect misc from", d))
if (is.na(d.info) || (d.info == FALSE))
return (NULL)
fnm = paste(d, "/theta-tags", sep="")
if (file.exists(fnm)) {
tags = readLines(fnm)
} else {
tags = NULL
}
fnm = paste(d, "/theta-from", sep="")
if (file.exists(fnm)) {
theta.from = readLines(fnm)
## evaluate these as functions
theta.from = lapply(theta.from, inla.source2function)
if (!is.null(tags)) {
names(theta.from) = tags
}
} else {
theta.from = NULL
}
fnm = paste(d, "/theta-to", sep="")
if (file.exists(fnm)) {
theta.to = readLines(fnm)
## evaluate these as functions
theta.to = lapply(theta.to, inla.source2function)
if (!is.null(tags)) {
names(theta.to) = tags
}
} else {
theta.to = NULL
}
fnm = paste(d, "/covmat-hyper-internal.dat", sep="")
if (file.exists(fnm)) {
siz = inla.read.binary.file(fnm)
n = siz[1L]
stopifnot(length(siz) == n^2L + 1L)
cov.intern = matrix(siz[-1L], n, n)
dd = diag(cov.intern)
s = matrix(0.0, n, n)
diag(s) = 1.0/sqrt(dd)
cor.intern = s %*% cov.intern %*% s
diag(cor.intern) = 1.0
} else {
cov.intern = NULL
cor.intern = NULL
}
fnm = paste(d, "/covmat-eigenvectors.dat", sep="")
if (file.exists(fnm)) {
siz = inla.read.binary.file(fnm)
n = siz[1L]
stopifnot(length(siz) == n^2L + 1L)
cov.intern.eigenvectors = matrix(siz[-1L], n, n)
} else {
cov.intern.eigenvectors = NULL
}
fnm = paste(d, "/covmat-eigenvalues.dat", sep="")
if (file.exists(fnm)) {
siz = inla.read.binary.file(fnm)
n = siz[1L]
stopifnot(length(siz) == n + 1L)
cov.intern.eigenvalues = siz[-1L]
} else {
cov.intern.eigenvalues = NULL
}
fnm = paste(d, "/reordering.dat", sep="")
if (file.exists(fnm)) {
r = as.integer(inla.read.binary.file(fnm))
} else {
r = NULL
}
fnm = paste(d, "/stdev_corr_pos.dat", sep="")
if (file.exists(fnm)) {
stdev.corr.positive = as.numeric(inla.read.fmesher.file(fnm))
} else {
stdev.corr.positive = NULL
}
fnm = paste(d, "/stdev_corr_neg.dat", sep="")
if (file.exists(fnm)) {
stdev.corr.negative = as.numeric(inla.read.fmesher.file(fnm))
} else {
stdev.corr.negative = NULL
}
fnm = paste(d, "/lincomb_derived_correlation_matrix.dat", sep="")
if (file.exists(fnm)) {
lincomb.derived.correlation.matrix = inla.read.fmesher.file(fnm)
} else {
lincomb.derived.correlation.matrix = NULL
}
fnm = paste(d, "/lincomb_derived_covariance_matrix.dat", sep="")
if (file.exists(fnm)) {
lincomb.derived.covariance.matrix = inla.read.fmesher.file(fnm)
} else {
lincomb.derived.covariance.matrix = NULL
}
fnm = paste(d, "/mode-status.dat", sep="")
if (file.exists(fnm)) {
mode.status = scan(fnm, quiet=TRUE)
} else {
mode.status = NA
}
fnm = paste(d, "/nfunc.dat", sep="")
if (file.exists(fnm)) {
nfunc = as.numeric(scan(fnm, quiet=TRUE))
} else {
nfunc = NA
}
fnm = paste(d, "/log-posterior-mode.dat", sep="")
if (file.exists(fnm)) {
lpm = scan(fnm, quiet=TRUE)
} else {
lpm = NA
}
fnm = paste(d, "/config/configs.dat", sep="")
if (file.exists(fnm)) {
fp = file(fnm, "rb")
iarr = readBin(fp, integer(), 3)
configs = list(
n = iarr[1],
nz = iarr[2],
ntheta = iarr[3])
configs.i = readBin(fp, integer(), configs$nz) ## 0-based
configs.j = readBin(fp, integer(), configs$nz) ## 0-based
configs$nconfig = readBin(fp, integer(), 1)
nc = readBin(fp, integer(), 1)
if (nc > 0) {
A = readBin(fp, numeric(), configs$n * nc)
e = readBin(fp, numeric(), nc)
configs$constr = list(
nc = nc,
A = matrix(A, nc, configs$n),
e = e)
} else {
configs$constr = NULL
}
theta.tag = readLines(paste(d, "/config/theta-tag.dat", sep=""))
configs$contents = list(
tag = readLines(paste(d, "/config/tag.dat", sep="")),
start = as.integer(readLines(paste(d, "/config/start.dat", sep=""))) + 1L,
length = as.integer(readLines(paste(d, "/config/n.dat", sep=""))))
if (configs$nconfig > 0L) {
configs$config[[configs$nconfig]] = list()
for(k in 1L:configs$nconfig) {
log.post = readBin(fp, numeric(), 1)
log.post.orig = readBin(fp, numeric(), 1)
if (configs$ntheta > 0L) {
theta = readBin(fp, numeric(), configs$ntheta)
names(theta) = theta.tag
} else {
theta = NULL
}
mean = readBin(fp, numeric(), configs$n)
improved.mean = readBin(fp, numeric(), configs$n)
skewness = readBin(fp, numeric(), configs$n)
## read and add the offsets here
offsets = readBin(fp, numeric(), configs$n)
mean = mean + offsets
improved.mean = improved.mean + offsets
Q = readBin(fp, numeric(), configs$nz)
Qinv = readBin(fp, numeric(), configs$nz)
dif = which(configs$i != configs$j)
if (length(dif) > 0L) {
iadd = configs.j[dif] ## yes, its the transpose part
jadd = configs.i[dif] ## yes, its the transpose part
Qadd = Q[dif]
Qinvadd = Qinv[dif]
} else {
iadd = c()
jadd = c()
Qadd = c()
Qinvadd = c()
}
configs$config[[k]] = list(
theta = theta,
log.posterior = log.post,
log.posterior.orig = log.post.orig,
mean = mean,
improved.mean = improved.mean,
skewness = skewness,
Q = sparseMatrix(
i = c(configs.i, iadd),
j = c(configs.j, jadd),
x = c(Q, Qadd),
dims = c(configs$n, configs$n),
index1 = FALSE,
giveCsparse = TRUE),
Qinv = sparseMatrix(
i = c(configs.i, iadd),
j = c(configs.j, jadd),
x = c(Qinv, Qinvadd),
dims = c(configs$n, configs$n),
index1 = FALSE,
giveCsparse = TRUE))
}
## rescale the log.posteriors
configs$max.log.posterior = max(sapply(configs$config, function(x) x$log.posterior.orig))
for(k in 1L:configs$nconfig) {
configs$config[[k]]$log.posterior = configs$config[[k]]$log.posterior - configs$max.log.posterior
configs$config[[k]]$log.posterior.orig = configs$config[[k]]$log.posterior.orig - configs$max.log.posterior
}
} else {
configs$config = NULL
}
close(fp)
} else {
configs = NULL
}
if (debug)
print(paste("collect misc from", d, "...done"))
return (list(cov.intern = cov.intern, cor.intern = cor.intern,
cov.intern.eigenvalues = cov.intern.eigenvalues, cov.intern.eigenvectors = cov.intern.eigenvectors,
reordering = r, theta.tags = tags, log.posterior.mode = lpm,
stdev.corr.negative = stdev.corr.negative, stdev.corr.positive = stdev.corr.positive,
to.theta = theta.to, from.theta = theta.from, mode.status = mode.status,
lincomb.derived.correlation.matrix = lincomb.derived.correlation.matrix,
lincomb.derived.covariance.matrix = lincomb.derived.covariance.matrix,
configs = configs, nfunc = nfunc))
}
`inla.collect.logfile` = function(file.log = NULL, debug = FALSE)
{
if (is.null(file.log)) {
return (list(logfile = NULL))
}
if (debug) {
print(paste("Read logfile", file.log))
}
if (file.exists(file.log)) {
## replace tab with spaces.........12345678....
return (list(logfile = gsub("\t", " ", readLines(file.log))))
} else {
return (list(logfile = NULL))
}
}
`inla.collect.size` = function(dir, debug = FALSE)
{
fnm = paste(dir, "/size.dat", sep="")
siz = inla.read.binary.file(fnm)
if (length(siz) != 5L) {
return(rep(0L, 5))
##stop(paste("length of siz is not 5L: fnm=", fnm))
}
if (is.na(siz[1L]) || siz[1L] < 0L) stop("siz[1L] = NA")
if (is.na(siz[2L]) || siz[2L] <= 0L) siz[2L] = siz[1L]
if (is.na(siz[3L]) || siz[3L] <= 0L) siz[3L] = siz[2L]
if (is.na(siz[4L]) || siz[4L] <= 0L) siz[4L] = 1L
if (is.na(siz[5L]) || siz[5L] <= 0L) siz[5L] = 1L
return (list(n=siz[1L], N = siz[2L], Ntotal = siz[3L], ngroup = siz[4L], nrep=siz[5L]))
}
`inla.collect.hyperid` = function(dir, debug = FALSE)
{
fnm = paste(dir, "/hyperid.dat", sep="")
id = readLines(fnm)
return (id)
}
`inla.collect.fixed` = function(results.dir, debug = FALSE)
{
alldir=dir(results.dir)
if (debug)
print("collect fixed effects")
## read FIXED EFFECTS
fix = alldir[grep("^fixed.effect", alldir)]
fix = c(fix, alldir[grep("^intercept$", alldir)])
n.fix = length(fix)
##read the names of the fixed effects
if (n.fix > 0L) {
names.fixed = inla.trim(character(n.fix))
for(i in 1L:n.fix) {
tag = paste(results.dir, .Platform$file.sep, fix[i], .Platform$file.sep,"TAG", sep="")
if (!file.exists(tag))
names.fixed[i] = "missing NAME"
else
names.fixed[i] = readLines(tag, n=1L)
}
##read summary the fixed effects
if (debug)
print(names.fixed)
summary.fixed = numeric()
marginals.fixed = list()
marginals.fixed[[n.fix]] = NA
for(i in 1L:n.fix) {
first.time = (i == 1L)
file = paste(results.dir, .Platform$file.sep, fix[i], sep="")
dir.fix = dir(file)
if (length(dir.fix) > 3L) {
summ = inla.read.binary.file(paste(file, .Platform$file.sep,"summary.dat", sep=""))[-1L]
if (first.time)
col.nam = c("mean","sd")
##read quantiles if existing
if (length(grep("^quantiles.dat$", dir.fix))>0L) {
qq = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep, "quantiles.dat", sep="")),
debug=debug)
summ = c(summ, qq[, 2L])
if (first.time)
col.nam = c(col.nam, paste(as.character(qq[, 1L]),"quant", sep=""))
}
##read mode if existing
if (length(grep("^mode.dat$", dir.fix))>0L) {
mm = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep, "mode.dat", sep="")),
debug=debug)
summ = c(summ, mm[, 2L])
if (first.time)
col.nam = c(col.nam, "mode")
}
if (length(grep("^cdf.dat$", dir.fix))>0L) {
qq = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep, "cdf.dat", sep="")),
debug=debug)
summ = c(summ, qq[, 2L])
if (first.time)
col.nam = c(col.nam, paste(as.character(qq[, 1L]),"cdf", sep=""))
}
##read also kld distance
kld.fixed = inla.read.binary.file(paste(file, .Platform$file.sep,"symmetric-kld.dat", sep=""))[-1L]
summ = c(summ, kld.fixed)
if (first.time)
col.nam = c(col.nam, "kld")
summary.fixed = rbind(summary.fixed, summ)
##read the marginals
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"marginal-densities.dat", sep="")),
debug=debug)
if (is.null(xx))
xx = cbind(c(NA, NA, NA), c(NA, NA, NA))
colnames(xx) = c("x", "y")
marginals.fixed[[i]] = xx
if (inla.internal.experimental.mode) {
class(marginals.fixed[[i]]) = "inla.marginal"
attr(marginals.fixed[[i]], "inla.tag") = paste("marginal fixed", names.fixed[i])
}
} else {
if (first.time)
col.nam = c("mean", "sd", "kld")
summary.fixed = rbind(summary.fixed, c(NA, NA, NA))
xx = cbind(c(NA, NA, NA), c(NA, NA, NA))
colnames(xx) = c("x", "y")
marginals.fixed[[i]] = xx
if (inla.internal.experimental.mode) {
class(marginals.fixed[[i]]) = "inla.marginal"
attr(marginals.fixed[[i]], "inla.tag") = paste("marginal fixed", names.fixed[i])
}
}
}
rownames(summary.fixed) = names.fixed
colnames(summary.fixed) = col.nam
if (length(marginals.fixed) > 0L) {
names(marginals.fixed) = names.fixed
}
}
else {
if (debug)
print("No fixed effects")
names.fixed=NULL
summary.fixed=NULL
marginals.fixed=NULL
}
if (inla.internal.experimental.mode) {
class(marginals.fixed) = "inla.marginals"
attr(marginals.fixed, "inla.tag", "marginals fixed")
}
ret = list(names.fixed=names.fixed,
summary.fixed= as.data.frame(summary.fixed),
marginals.fixed=marginals.fixed)
return(ret)
}
`inla.collect.lincomb` =
function(results.dir,
debug = FALSE,
derived = TRUE)
{
## rewrite from collect.random
alldir = dir(results.dir)
if (derived) {
lincomb = alldir[grep("^lincomb.*derived[.]all", alldir)]
} else {
lincomb1 = alldir[grep("^lincomb.*derived[.]all", alldir)]
lincomb2 = alldir[grep("^lincomb", alldir)]
lincomb = setdiff(lincomb2, lincomb1)
if (debug)
print(paste("lincomb", lincomb))
}
n.lincomb = length(lincomb)
if (debug)
print("collect lincombs")
##read the names and model of the lincomb effects
if (n.lincomb > 0L) {
names.lincomb = character(n.lincomb)
model.lincomb = inla.trim(character(n.lincomb))
summary.lincomb = list()
summary.lincomb[[n.lincomb]] = NA
marginals.lincomb = list()
marginals.lincomb[[n.lincomb]] = NA
size.lincomb = list()
size.lincomb[[n.lincomb]] = NA
for(i in 1L:n.lincomb) {
if (debug)
print(paste("read lincomb ", i , " of ", n.lincomb))
##read the summary
file= paste(results.dir, .Platform$file.sep, lincomb[i], sep="")
dir.lincomb = dir(file)
if (debug)
print(paste("read from dir ", file))
if (length(dir.lincomb) > 4L) {
dd = matrix(inla.read.binary.file(file=paste(file, .Platform$file.sep,"summary.dat", sep="")),
ncol=3L, byrow=TRUE)
col.nam = c("ID","mean","sd")
##read quantiles if existing
if (debug)
cat("...quantiles.dat if any\n")
if (length(grep("^quantiles.dat$", dir.lincomb))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,
"quantiles.dat", sep="")), debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L]),"quant", sep=""))
dd = cbind(dd, t(qq))
}
##read mode if existing
if (length(grep("^mode.dat$", dir.lincomb))>0L) {
mm = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep, "mode.dat", sep="")),
debug=debug)
len = dim(mm)[2L]
qq = mm[, seq(2L, len, by=2L), drop=FALSE]
dd = cbind(dd, t(qq))
col.nam = c(col.nam, "mode")
}
##read cdf if existing
if (debug)
cat("...cdf.dat if any\n")
if (length(grep("^cdf.dat$", dir.lincomb))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"cdf.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L])," cdf", sep=""))
dd = cbind(dd, t(qq))
}
if (debug)
cat("...NAMES if any\n")
if (length(grep("^NAMES$", dir.lincomb))==1L) {
row.names = readLines(paste(file, .Platform$file.sep,"NAMES", sep=""))
## remove the prefix 'lincomb.' as we do not need it in the names.
row.names = sapply(row.names, function(x) gsub("^lincomb[.]", "", x))
names(row.names) = NULL
} else {
row.names = NULL
}
##read kld
if (debug)
cat("...kld\n")
kld1 = matrix(inla.read.binary.file(file=paste(file, .Platform$file.sep,"symmetric-kld.dat", sep="")),
ncol=2L, byrow=TRUE)
qq = kld1[, 2L, drop=FALSE]
dd = cbind(dd, qq)
if (debug)
cat("...kld done\n")
col.nam = c(col.nam, "kld")
colnames(dd) = col.nam
summary.lincomb[[i]] = as.data.frame(dd)
if (!is.null(row.names)) {
rownames(summary.lincomb[[i]]) = row.names
}
xx = inla.read.binary.file(paste(file, .Platform$file.sep,"marginal-densities.dat", sep=""))
rr = inla.interpret.vector.list(xx, debug=debug)
rm(xx)
if (!is.null(rr)) {
nd = length(rr)
names(rr) = paste("index.", as.character(1L:nd), sep="")
for(j in 1L:nd) {
colnames(rr[[j]]) = c("x", "y")
if (inla.internal.experimental.mode) {
class(rr[[j]]) = "inla.marginal"
if (derived) {
attr(rr[[j]], "inla.tag") = paste("marginal lincomb derived", names(rr)[j])
} else {
attr(rr[[j]], "inla.tag") = paste("marginal lincomb", names(rr)[j])
}
}
}
}
marginals.lincomb[[i]] = rr
if (!is.null(row.names) && (length(marginals.lincomb)>0L)) {
names(marginals.lincomb[[i]]) = row.names
}
} else {
N.file = paste(file, .Platform$file.sep,"N", sep="")
if (!file.exists(N.file)) {
N = 0L
} else {
N = scan(file=N.file, what = numeric(0L), quiet=TRUE)
}
summary.lincomb[[i]] = data.frame("mean" = rep(NA, N), "sd" = rep(NA, N), "kld" = rep(NA, N))
marginals.lincomb = NULL
}
size.lincomb[[i]] = inla.collect.size(file)
if (inla.internal.experimental.mode) {
if (!is.null(marginals.lincomb)) {
class(marginals.lincomb[[i]]) = "inla.marginals"
if (derived) {
attr(marginals.lincomb[[i]], "inla.tag") = "marginal lincomb derived"
} else {
attr(marginals.lincomb[[i]], "inla.tag") = "marginal lincomb"
}
}
}
}
names(summary.lincomb) = names.lincomb
## could be that marginals.lincomb is a list of lists of NULL
if (!is.null(marginals.lincomb)) {
if (all(sapply(marginals.lincomb, is.null)))
marginals.lincomb = NULL
}
if (!is.null(marginals.lincomb) && (length(marginals.lincomb) > 0L))
names(marginals.lincomb) = names.lincomb
} else {
if (debug)
cat("No lincomb effets\n")
summary.lincomb=NULL
marginals.lincomb=NULL
size.lincomb = NULL
}
if (derived) {
res = list(
summary.lincomb.derived = as.data.frame(summary.lincomb[[1L]]),
marginals.lincomb.derived = inla.ifelse(length(marginals.lincomb) > 0L, marginals.lincomb[[1L]], NULL),
size.lincomb.derived = size.lincomb[[1L]])
} else {
res = list(
summary.lincomb = as.data.frame(summary.lincomb[[1L]]),
marginals.lincomb = inla.ifelse(length(marginals.lincomb)>0L, marginals.lincomb[[1L]], NULL),
size.lincomb = size.lincomb[[1L]])
}
return(res)
}
`inla.collect.cpo` =
function(results.dir,
debug = FALSE)
{
alldir = dir(results.dir)
if (length(grep("^cpo$", alldir))==1L) {
if (debug)
cat(paste("collect cpo\n", sep=""))
xx = inla.read.binary.file(file=paste(results.dir, .Platform$file.sep,"cpo", .Platform$file.sep,"cpo.dat", sep=""))
n = xx[1L]
xx = xx[-1L]
len = length(xx)
cpo.res=numeric(n)
cpo.res[1L:n] = NA
cpo.res[xx[seq(1L, len, by=2L)] +1L] = xx[seq(2L, len, by=2L)]
xx = inla.read.binary.file(file=paste(results.dir, .Platform$file.sep,"cpo", .Platform$file.sep,"pit.dat", sep=""))
n = xx[1L]
xx = xx[-1L]
len = length(xx)
pit.res = numeric(n)
pit.res[1L:n] = NA
pit.res[xx[seq(1L, len, by=2L)] +1L] = xx[seq(2L, len, by=2L)]
fnm=paste(results.dir, .Platform$file.sep,"cpo", .Platform$file.sep,"failure.dat", sep="")
if (file.exists(fnm)) {
xx = inla.read.binary.file(fnm)
n = xx[1L]
xx = xx[-1L]
len = length(xx)
failure.res = numeric(n)
failure.res[1L:n] = NA
failure.res[xx[seq(1L, len, by=2L)] +1L] = xx[seq(2L, len, by=2L)]
}
else
failure.res = NULL
rm(xx)
} else {
cpo.res = NULL
pit.res = NULL
failure.res = NULL
}
## want NA not NaN
cpo.res[is.nan(cpo.res)] = NA
pit.res[is.nan(pit.res)] = NA
failure.res[is.nan(failure.res)] = NA
return(list(cpo=cpo.res, pit=pit.res, failure=failure.res))
}
`inla.collect.po` =
function(results.dir,
debug = FALSE)
{
alldir = dir(results.dir)
if (length(grep("^po$", alldir))==1L) {
if (debug)
cat(paste("collect po\n", sep=""))
xx = inla.read.binary.file(file=paste(results.dir, .Platform$file.sep,"po", .Platform$file.sep,"po.dat", sep=""))
n = xx[1L]
xx = xx[-1L]
xx = xx[-seq(3, length(xx), by = 3L)] ## skip entry 3, 6, 9, ...
len = length(xx)
po.res=numeric(n)
po.res[1L:n] = NA
po.res[xx[seq(1L, len, by=2L)] +1L] = xx[seq(2L, len, by=2L)]
} else {
po.res = NULL
}
## want NA not NaN
po.res[is.nan(po.res)] = NA
return(list(po=po.res))
}
`inla.collect.waic` =
function(results.dir,
debug = FALSE)
{
## yes, here we use the po-results!!!!
alldir = dir(results.dir)
if (length(grep("^po$", alldir))==1L) {
if (debug)
cat(paste("collect waic from po-results\n", sep=""))
xx = inla.read.binary.file(file=paste(results.dir, .Platform$file.sep,"po", .Platform$file.sep,"po.dat", sep=""))
n = xx[1L]
xx = xx[-1L]
len = length(xx)
po.res=numeric(n)
po2.res=numeric(n)
po.res[1L:n] = NA
po.res[xx[seq(1L, len, by=3L)] +1L] = xx[seq(2L, len, by=3L)]
po2.res[1L:n] = NA
po2.res[xx[seq(1L, len, by=3L)] +1L] = xx[seq(3L, len, by=3L)]
## want NA not NaN
po.res[is.nan(po.res)] = NA
po2.res[is.nan(po2.res)] = NA
## compute waic
return (list(
waic = -2*(sum(log(po.res), na.rm=TRUE) - sum(po2.res, na.rm=TRUE)),
p.eff = sum(po2.res, na.rm=TRUE),
local.waic=-2*(log(po.res)-po2.res),
local.p.eff=po2.res))
} else {
return (NULL)
}
}
`inla.collect.dic` =
function(results.dir,
debug = FALSE)
{
alldir = dir(results.dir)
## get dic (if exists)
if (length(grep("^dic$", alldir))==1L) {
if (debug)
cat(paste("collect dic\n", sep=""))
file=paste(results.dir, .Platform$file.sep,"dic", .Platform$file.sep,"dic.dat", sep="")
dic.values = inla.read.binary.file(file)
file=paste(results.dir, .Platform$file.sep,"dic", .Platform$file.sep,"deviance_e.dat", sep="")
if (inla.is.fmesher.file(file)) {
dev.e = c(inla.read.fmesher.file(file))
dev.e[is.nan(dev.e)] = NA
} else {
dev.e = NULL
}
file=paste(results.dir, .Platform$file.sep,"dic", .Platform$file.sep,"deviance_e_sat.dat", sep="")
if (inla.is.fmesher.file(file)) {
dev.e.sat = c(inla.read.fmesher.file(file))
dev.e.sat[is.nan(dev.e.sat)] = NA
} else {
dev.e.sat = NULL
}
file=paste(results.dir, .Platform$file.sep,"dic", .Platform$file.sep,"e_deviance.dat", sep="")
if (inla.is.fmesher.file(file)) {
e.dev = c(inla.read.fmesher.file(file))
e.dev[is.nan(e.dev)] = NA
} else {
e.dev = NULL
}
file=paste(results.dir, .Platform$file.sep,"dic", .Platform$file.sep,"e_deviance_sat.dat", sep="")
if (inla.is.fmesher.file(file)) {
e.dev.sat = c(inla.read.fmesher.file(file))
e.dev.sat[is.nan(e.dev.sat)] = NA
} else {
e.dev.sat = NULL
}
f.idx = NULL
file=paste(results.dir, .Platform$file.sep,"dic", .Platform$file.sep,"family_idx.dat", sep="")
if (inla.is.fmesher.file(file)) {
f.idx = c(inla.read.fmesher.file(file)) + 1L ## convert to R-indexing
f.idx[is.nan(f.idx)] = NA
}
## if there there is no data at all, then all dic'values are
## NA. the returned values are 0, so we override them here.
if (!is.null(f.idx) && all(is.na(f.idx))) {
dic.values[] = NA
}
local.dic = 2.0*e.dev - dev.e
local.dic.sat = 2.0*e.dev.sat - dev.e.sat
local.p.eff = e.dev - dev.e
fam.dic = dic.values[4L]
fam.p.eff = dic.values[3L]
if (!is.null(f.idx) && !all(is.na(f.idx))) {
n.fam = max(f.idx, na.rm = TRUE)
fam.dic = numeric(n.fam)
fam.dic.sat = numeric(n.fam)
fam.p.eff = numeric(n.fam)
for(i in 1:n.fam) {
idx = which(f.idx == i)
fam.dic[i] = sum(local.dic[idx])
fam.dic.sat[i] = sum(local.dic.sat[idx])
fam.p.eff[i] = sum(local.p.eff[idx])
}
}
dic = list(
"dic" = dic.values[4L],
"p.eff"= dic.values[3L],
"mean.deviance" = dic.values[1L],
"deviance.mean" = dic.values[2L],
"dic.sat" = dic.values[4L+4L],
"mean.deviance.sat" = dic.values[4L + 1L],
"deviance.mean.sat" = dic.values[4L + 2L],
"family.dic" = fam.dic,
"family.dic.sat" = fam.dic.sat,
"family.p.eff" = fam.p.eff,
"family" = f.idx,
"local.dic" = local.dic,
"local.dic.sat" = local.dic.sat,
"local.p.eff" = local.p.eff)
} else {
dic = NULL
}
return(dic)
}
`inla.collect.q` =
function(results.dir,
debug = FALSE)
{
my.read.pnm = function(...) {
args = list(...)
filename = args[[1]]
if (file.exists(filename) && inla.require("pixmap")) {
## disable warnings
warn = getOption("warn")
options(warn=-1L) ## disable...
ret = pixmap::read.pnm(...)
do.call("options", args = list(warn = warn))
} else {
if (file.exists(filename)) {
warning("You need to install 'pixmap' to read bitmap files.")
}
ret = NULL
}
return (ret)
}
alldir = dir(results.dir)
if (length(grep("^Q$", alldir))==1L) {
if (debug)
cat(paste("collect q\n", sep=""))
file=paste(results.dir, .Platform$file.sep,"Q/precision-matrix.pbm", sep="")
Q.matrix = my.read.pnm(file)
file=paste(results.dir, .Platform$file.sep,"Q/precision-matrix-reordered.pbm", sep="")
Q.matrix.reorder = my.read.pnm(file)
file=paste(results.dir, .Platform$file.sep,"Q/precision-matrix_L.pbm", sep="")
L = my.read.pnm(file)
if (is.null(Q.matrix) && is.null(Q.matrix.reorder) && is.null(L)) {
q = NULL
} else {
q = list(Q = Q.matrix, Q.reorder = Q.matrix.reorder, L = L)
}
} else {
q = NULL
}
return(q)
}
`inla.collect.graph` =
function(results.dir,
debug = FALSE)
{
alldir = dir(results.dir)
if (length(grep("^graph.dat$", alldir))==1L) {
if (debug) {
cat(paste("collect graph\n", sep=""))
}
file=paste(results.dir, .Platform$file.sep, "graph.dat", sep="")
g = inla.read.graph(file)
} else {
g = NULL
}
return (list(graph = g))
}
`inla.collect.hyperpar` =
function(results.dir,
debug=FALSE)
{
alldir = dir(results.dir)
all.hyper = alldir[grep("^hyperparameter", alldir)]
hyper = all.hyper[grep("user-scale$", all.hyper)]
n.hyper = length(hyper)
if (n.hyper > 0L) {
## get names for hyperpar
names.hyper = character(n.hyper)
for(i in 1L:n.hyper) {
tag = paste(results.dir, .Platform$file.sep, hyper[i], .Platform$file.sep,"TAG", sep="")
if (!file.exists(tag)) {
names.hyper[i] = "missing NAME"
} else {
names.hyper[i] = readLines(tag, n=1L)
}
}
## get summary and marginals
summary.hyper = numeric()
marginal.hyper = list()
marginal.hyper[[n.hyper]] = NA
for(i in 1L:n.hyper) {
first.time = (i == 1L)
dir.hyper = paste(results.dir, .Platform$file.sep, hyper[i], sep="")
file = paste(dir.hyper, .Platform$file.sep,"summary.dat", sep="")
hyperid = inla.collect.hyperid(dir.hyper)
dd = inla.read.binary.file(file)[-1L]
summ = dd
if (first.time)
col.nam = c("mean","sd")
if (length(grep("^quantiles.dat$", dir(dir.hyper)))>0L) {
qq = inla.interpret.vector(inla.read.binary.file(paste(dir.hyper, .Platform$file.sep, "quantiles.dat", sep="")),
debug=debug)
summ = c(summ, qq[, 2L])
if (first.time)
col.nam = c(col.nam, paste(as.character(qq[, 1L]),"quant", sep=""))
}
if (length(grep("^mode.dat$", dir(dir.hyper)))>0L) {
qq = inla.interpret.vector(inla.read.binary.file(paste(dir.hyper, .Platform$file.sep, "mode.dat", sep="")),
debug=debug)
summ = c(summ, qq[, 2L])
if (first.time)
col.nam = c(col.nam, "mode")
}
if (length(grep("^cdf.dat$", dir(dir.hyper)))>0L) {
qq = inla.interpret.vector(inla.read.binary.file(paste(dir.hyper, .Platform$file.sep, "cdf.dat", sep="")),
debug=debug)
summ = c(summ, qq[, 2L])
if (first.time)
col.nam = c(col.nam, paste(as.character(qq[, 1L]),"cdf", sep=""))
}
summary.hyper = rbind(summary.hyper, summ)
file =paste(results.dir, .Platform$file.sep, hyper[i], .Platform$file.sep,"marginal-densities.dat", sep="")
xx = inla.read.binary.file(file)
marg1 = inla.interpret.vector(xx, debug=debug)
attr(marg1, "hyperid") = hyperid
rm(xx)
if (!is.null(marg1)) {
colnames(marg1) = c("x","y")
}
if (inla.internal.experimental.mode) {
class(marg1) = "inla.marginal"
attr(marg1, "inla.tag") = paste("marginal hyper", names.hyper[i])
}
marginal.hyper[[i]] = marg1
}
names(marginal.hyper) = names.hyper
rownames(summary.hyper) = names.hyper
colnames(summary.hyper) = col.nam
} else {
marginal.hyper=NULL
summary.hyper=NULL
}
if (inla.internal.experimental.mode) {
if (!is.null(marginal.hyper)) {
class(marginal.hyper) = "inla.marginals"
attr(marginal.hyper, "inla.tag") = "marginal hyper"
}
}
## collect also the hyperparameters in the internal scale
all.hyper = alldir[grep("^hyperparameter", alldir)]
hyper = all.hyper[-grep("user-scale$", all.hyper)]
n.hyper = length(hyper)
if (n.hyper > 0L) {
## get names for hyperpar
names.hyper = character(n.hyper)
for(i in 1L:n.hyper) {
tag = paste(results.dir, .Platform$file.sep, hyper[i], .Platform$file.sep,"TAG", sep="")
if (!file.exists(tag))
names.hyper[i] = "missing NAME"
else
names.hyper[i] = readLines(tag, n=1L)
}
## get summary and marginals
internal.summary.hyper = numeric()
internal.marginal.hyper = list()
internal.marginal.hyper[[n.hyper]] = NA
for(i in 1L:n.hyper) {
first.time = (i == 1L)
dir.hyper = paste(results.dir, .Platform$file.sep, hyper[i], sep="")
file = paste(dir.hyper, .Platform$file.sep,"summary.dat", sep="")
hyperid = inla.collect.hyperid(dir.hyper)
dd = inla.read.binary.file(file)[-1L]
summ = dd
if (first.time)
col.nam = c("mean","sd")
if (length(grep("^quantiles.dat$", dir(dir.hyper)))>0L) {
qq = inla.interpret.vector(inla.read.binary.file(paste(dir.hyper, .Platform$file.sep, "quantiles.dat", sep="")),
debug=debug)
summ = c(summ, qq[, 2L])
if (first.time)
col.nam = c(col.nam, paste(as.character(qq[, 1L]),"quant", sep=""))
}
if (length(grep("^mode.dat$", dir(dir.hyper)))>0L) {
qq = inla.interpret.vector(inla.read.binary.file(paste(dir.hyper, .Platform$file.sep, "mode.dat", sep="")),
debug=debug)
summ = c(summ, qq[, 2L])
if (first.time)
col.nam = c(col.nam, "mode")
}
if (length(grep("^cdf.dat$", dir(dir.hyper)))>0L) {
qq = inla.interpret.vector(inla.read.binary.file(paste(dir.hyper, .Platform$file.sep, "cdf.dat", sep="")),
debug=debug)
summ = c(summ, qq[, 2L])
if (first.time)
col.nam = c(col.nam, paste(as.character(qq[, 1L]),"cdf", sep=""))
}
if (first.time) {
internal.summary.hyper = matrix(NA, n.hyper, length(summ))
}
internal.summary.hyper[i, ] = summ
file =paste(results.dir, .Platform$file.sep, hyper[i], .Platform$file.sep,"marginal-densities.dat", sep="")
xx = inla.read.binary.file(file)
marg1 = inla.interpret.vector(xx, debug=debug)
attr(marg1, "hyperid") = hyperid
rm(xx)
if (!is.null(marg1))
colnames(marg1) = c("x","y")
if (inla.internal.experimental.mode) {
class(marg1) = "inla.marginal"
attr(marg1, "inla.tag") = paste("marginal hyper internal", names.hyper[i])
}
internal.marginal.hyper[[i]] = marg1
}
names(internal.marginal.hyper) = names.hyper
rownames(internal.summary.hyper) = names.hyper
colnames(internal.summary.hyper) = col.nam
} else {
internal.summary.hyper=NULL
internal.marginal.hyper=NULL
}
if (inla.internal.experimental.mode) {
if (!is.null(internal.marginal.hyper)) {
class(internal.marginal.hyper) = "inla.marginals"
attr(internal.marginal.hyper, "inla.tag") = "marginal hyper internal"
}
}
ret=list(summary.hyperpar= as.data.frame(summary.hyper),
marginals.hyperpar=marginal.hyper,
internal.summary.hyperpar = as.data.frame(internal.summary.hyper),
internal.marginals.hyperpar = internal.marginal.hyper)
return(ret)
}
`inla.collect.mlik` =
function(results.dir,
debug = FALSE)
{
alldir = dir(results.dir)
if (length(grep("^marginal-likelihood$", alldir))==1L) {
if (debug)
cat(paste("collect mlik\n", sep=""))
file=paste(results.dir, .Platform$file.sep,"marginal-likelihood",
.Platform$file.sep,"marginal-likelihood.dat", sep="")
mlik.res = matrix(inla.read.binary.file(file), 2L, 1L)
rownames(mlik.res) = c("log marginal-likelihood (integration)",
"log marginal-likelihood (Gaussian)")
}
else
mlik.res = NULL
return(list(mlik=mlik.res))
}
`inla.collect.predictor` =
function(results.dir,
return.marginals.predictor = TRUE,
debug = FALSE)
{
alldir = dir(results.dir)
##FIRST: get the linear predictor
subdir=paste(results.dir, .Platform$file.sep,"predictor", sep="")
if (length(dir(subdir))>3L) {
if (debug)
cat(paste("collect linear predictor\n", sep=""))
if (debug)
cat("...read summary.dat\n")
file=paste(subdir, .Platform$file.sep,"summary.dat", sep="")
dd = matrix(inla.read.binary.file(file=file), ncol=3L, byrow=TRUE)[,-1L, drop=FALSE]
col.nam = c("mean","sd")
## info about size
size.info = inla.collect.size(subdir)
if (!is.null(size.info)) {
A = (size.info$nrep == 2)
n = size.info$n
nA = size.info$Ntotal - size.info$n
} else {
## should not happen
stop("This should not happen")
}
## get quantiles if computed
if (length(grep("^quantiles.dat$", dir(subdir)))==1L) {
if (debug)
cat("...read quantiles.dat\n")
file=paste(subdir, .Platform$file.sep,"quantiles.dat", sep="")
xx = inla.interpret.vector(inla.read.binary.file(file), debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L]),"quant", sep=""))
dd = cbind(dd, t(qq))
rm(xx)
}
if (length(grep("^mode.dat$", dir(subdir)))==1L) {
if (debug)
cat("...read mode.dat\n")
file=paste(subdir, .Platform$file.sep,"mode.dat", sep="")
xx = inla.interpret.vector(inla.read.binary.file(file), debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L)]
col.nam = c(col.nam, "mode")
dd = cbind(dd, qq)
rm(xx)
}
## get cdf if computed
if (length(grep("^cdf.dat$", dir(subdir)))==1L) {
if (debug)
cat("...read cdf.dat\n")
file=paste(subdir, .Platform$file.sep,"cdf.dat", sep="")
xx = inla.interpret.vector(inla.read.binary.file(file), debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L])," cdf", sep=""))
dd = cbind(dd, t(qq))
rm(xx)
} else {
if (debug)
cat("... no cdf.dat\n")
}
## get kld
if (debug)
cat("...read kld\n")
kld = matrix(inla.read.binary.file(file=paste(subdir, .Platform$file.sep,"symmetric-kld.dat", sep="")),
ncol=2L, byrow=TRUE)
dd = cbind(dd, kld[, 2L, drop=FALSE])
col.nam = c(col.nam, "kld")
colnames(dd) = col.nam
summary.linear.predictor = as.data.frame(dd)
if (A) {
rownames(summary.linear.predictor) = c(paste("APredictor.", inla.num(1L:nA), sep=""),
paste("Predictor.", inla.num(1:n), sep=""))
} else {
rownames(summary.linear.predictor) = paste("Predictor.", inla.num(1L:size.info$Ntotal), sep="")
}
if (return.marginals.predictor) {
if (debug)
cat("...read marginal-densities.dat\n")
file=paste(subdir, .Platform$file.sep,"marginal-densities.dat", sep="")
xx = inla.read.binary.file(file)
rr = inla.interpret.vector.list(xx, debug=debug)
rm(xx)
if (!is.null(rr)) {
if (A) {
names(rr) = c(paste("APredictor.", inla.num(1L:nA), sep=""),
paste("Predictor.", inla.num(1L:n), sep=""))
} else {
names(rr) = paste("Predictor.", as.character(1L:length(rr)), sep="")
}
names.rr = names(rr)
for(i in 1L:length(rr)) {
colnames(rr[[i]]) = c("x", "y")
if (inla.internal.experimental.mode) {
class(rr[[i]]) = "inla.marginal"
attr(rr[[i]], "inla.tag") = paste("marginal linear predictor", names.rr[i])
}
}
}
if (inla.internal.experimental.mode) {
class(rr) = "inla.marginals"
attr(rr, "inla.tag") = "marginals linear predictor"
}
marginals.linear.predictor = rr
} else {
marginals.linear.predictor = NULL
}
} else {
summary.linear.predictor = NULL
marginals.linear.predictor = NULL
size.info = NULL
}
##SECOND: get the inverse linear predictor(if computed)
if (length(grep("^predictor-user-scale$", alldir))==1L) {
subdir=paste(results.dir, .Platform$file.sep,"predictor-user-scale", sep="")
if (length(dir(subdir))>3L) {
if (debug)
cat(paste("collect fitted values\n", sep=""))
file=paste(subdir, .Platform$file.sep,"summary.dat", sep="")
dd = matrix(inla.read.binary.file(file=file), ncol=3L, byrow=TRUE)[,-1L, drop=FALSE]
col.nam = c("mean","sd")
## get quantiles if computed
if (length(grep("^quantiles.dat$", dir(subdir)))==1L) {
file=paste(subdir, .Platform$file.sep,"quantiles.dat", sep="")
xx = inla.interpret.vector(inla.read.binary.file(file), debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L]),"quant", sep=""))
dd = cbind(dd, t(qq))
rm(xx)
}
if (length(grep("^mode.dat$", dir(subdir)))==1L) {
file=paste(subdir, .Platform$file.sep,"mode.dat", sep="")
xx = inla.interpret.vector(inla.read.binary.file(file), debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L)]
col.nam = c(col.nam, "mode")
dd = cbind(dd, qq)
rm(xx)
}
## get cdf if computed
if (length(grep("^cdf.dat$", dir(subdir)))==1L) {
file=paste(subdir, .Platform$file.sep,"cdf.dat", sep="")
xx = inla.interpret.vector(inla.read.binary.file(file), debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L])," cdf", sep=""))
dd = cbind(dd, t(qq))
rm(xx)
}
colnames(dd) = col.nam
if (A) {
rownames(dd) = c(paste("fitted.APredictor.", inla.num(1L:nA), sep=""),
paste("fitted.Predictor.", inla.num(1L:n), sep=""))
} else {
rownames(dd) = paste("fitted.Predictor.", inla.num(1L:n), sep="")
}
summary.fitted.values = as.data.frame(dd)
if (return.marginals.predictor) {
file=paste(subdir, .Platform$file.sep,"marginal-densities.dat", sep="")
xx = inla.read.binary.file(file)
rr = inla.interpret.vector.list(xx, debug=debug)
rm(xx)
if (!is.null(rr)) {
if (A) {
names(rr) = c(paste("fitted.APredictor.", inla.num(1L:nA), sep=""),
paste("fitted.Predictor.", inla.num(1:n), sep=""))
} else {
names(rr) = paste("fitted.Predictor.", inla.num(1L:length(rr)), sep="")
}
names.rr = names(rr)
for(i in 1L:length(rr)) {
colnames(rr[[i]]) = c("x", "y")
if (inla.internal.experimental.mode) {
class(rr[[i]]) = "inla.marginal"
attr(rr[[i]], "inla.tag") = paste("marginal fitted values", names.rr[i])
}
}
}
if (inla.internal.experimental.mode) {
class(rr) = "inla.marginals"
attr(rr, "inla.tag") = "marginals fitted values"
}
marginals.fitted.values = rr
} else {
marginals.fitted.values = NULL
}
} else {
summary.fitted.values = NULL
marginals.fitted.values = NULL
}
} else {
summary.fitted.values = NULL
marginals.fitted.values = NULL
}
res = list(summary.linear.predictor= as.data.frame(summary.linear.predictor),
marginals.linear.predictor=marginals.linear.predictor,
summary.fitted.values=as.data.frame(summary.fitted.values),
marginals.fitted.values=marginals.fitted.values,
size.linear.predictor = size.info)
return(res)
}
`inla.collect.random` =
function(results.dir,
return.marginals.random,
debug = FALSE)
{
alldir = dir(results.dir)
random = alldir[grep("^random.effect", alldir)]
n.random = length(random)
if (debug)
print("collect random effects")
##read the names and model of the random effects
if (n.random > 0L) {
names.random = character(n.random)
model.random = inla.trim(character(n.random))
for(i in 1L:n.random) {
tag = paste(results.dir, .Platform$file.sep, random[i], .Platform$file.sep,"TAG", sep="")
if (!file.exists(tag))
names.random[i] = "missing NAME"
else
names.random[i] = readLines(tag, n=1L)
modelname = inla.trim(paste(results.dir, .Platform$file.sep, random[i], .Platform$file.sep,"MODEL", sep=""))
if (!file.exists(modelname))
model.random[i] = "NoModelName"
else
model.random[i] = inla.trim(readLines(modelname, n=1L))
}
summary.random = list()
summary.random[[n.random]] = NA
size.random = list()
size.random[[n.random]] = NA
if (return.marginals.random) {
marginals.random = list()
marginals.random[[n.random]] = NA
} else {
marginals.random = NULL
}
for(i in 1L:n.random) {
if (debug)
print(paste("read random ", i , " of ", n.random))
##read the summary
file= paste(results.dir, .Platform$file.sep, random[i], sep="")
dir.random = dir(file)
if (length(dir.random) > 5L) {
dd = matrix(inla.read.binary.file(file=paste(file, .Platform$file.sep,"summary.dat", sep="")), ncol=3L, byrow=TRUE)
col.nam = c("ID","mean","sd")
##read quantiles if existing
if (debug)
cat("...quantiles.dat if any\n")
if (length(grep("^quantiles.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"quantiles.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L]),"quant", sep=""))
dd = cbind(dd, t(qq))
}
if (length(grep("^mode.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"mode.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L)]
col.nam = c(col.nam, "mode")
dd = cbind(dd, qq)
}
##read cdf if existing
if (debug)
cat("...cdf.dat if any\n")
if (length(grep("^cdf.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"cdf.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L])," cdf", sep=""))
dd = cbind(dd, t(qq))
}
##read kld
if (debug)
cat("...kld\n")
kld1 = matrix(inla.read.binary.file(file=paste(file, .Platform$file.sep,"symmetric-kld.dat", sep="")),
ncol=2L, byrow=TRUE)
qq = kld1[, 2L, drop=FALSE]
dd = cbind(dd, qq)
if (debug)
cat("...kld done\n")
col.nam = c(col.nam, "kld")
colnames(dd) = col.nam
summary.random[[i]] = as.data.frame(dd)
if (return.marginals.random) {
xx = inla.read.binary.file(paste(file, .Platform$file.sep,"marginal-densities.dat", sep=""))
rr = inla.interpret.vector.list(xx, debug=debug)
rm(xx)
if (!is.null(rr)) {
nd = length(rr)
names(rr) = paste("index.", as.character(1L:nd), sep="")
names.rr = names(rr)
for(j in 1L:nd) {
colnames(rr[[j]]) = c("x", "y")
if (inla.internal.experimental.mode) {
class(rr[[j]]) = "inla.marginal"
attr(rr[[j]], "inla.tag") = paste("marginal random", names.random[i], names.rr[j])
}
}
}
if (inla.internal.experimental.mode) {
class(rr) = "inla.marginals"
attr(rr, "inla.tag") = paste("marginals random", names.random[i])
}
marginals.random[[i]] = if (is.null(rr)) NA else rr
} else {
stopifnot(is.null(marginals.random))
}
## if id.names are present, override the default names
id.names = inla.readLines(paste(file, .Platform$file.sep,"id-names.dat", sep=""))
if (!is.null(id.names)) {
len.id.names = length(id.names)
summary.random[[i]]$ID[1L:len.id.names] = id.names
if (length(marginals.random) >= i && !is.na(marginals.random[[i]])) {
names(marginals.random[[i]][1L:len.id.names]) = id.names
}
}
} else {
N.file = paste(file, .Platform$file.sep,"N", sep="")
if (!file.exists(N.file)) {
N = 0L
} else {
N = scan(file=N.file, what = numeric(0L), quiet=TRUE)
}
summary.random[[i]] = data.frame("mean" = rep(NA, N), "sd" = rep(NA, N), "kld" = rep(NA, N))
marginals.random = NULL
}
size.random[[i]] = inla.collect.size(file)
}
names(summary.random) = names.random
## could be that marginals.random is a list of lists of NULL or NA
if (!is.null(marginals.random)) {
if (all(sapply(marginals.random, function(x) (is.null(x) || is.na(x)))))
marginals.random = NULL
}
if (!is.null(marginals.random) && (length(marginals.random) > 0L)) {
names(marginals.random) = names.random
}
} else {
if (debug)
cat("No random effets\n")
model.random=NULL
summary.random=NULL
marginals.random=NULL
size.random = NULL
}
res = list(model.random=model.random,
summary.random= lapply(summary.random, as.data.frame),
marginals.random=marginals.random,
size.random = size.random)
return(res)
}
`inla.collect.spde2.blc` =
function(results.dir,
return.marginals.random,
debug = FALSE)
{
## a copy from collect.random
alldir = dir(results.dir)
random = alldir[grep("^spde2.blc", alldir)]
n.random = length(random)
if (debug)
print("collect random effects")
##read the names and model of the random effects
if (n.random > 0L) {
names.random = character(n.random)
model.random = inla.trim(character(n.random))
for(i in 1L:n.random) {
tag = paste(results.dir, .Platform$file.sep, random[i], .Platform$file.sep,"TAG", sep="")
if (!file.exists(tag))
names.random[i] = "missing NAME"
else
names.random[i] = readLines(tag, n=1L)
modelname = inla.trim(paste(results.dir, .Platform$file.sep, random[i], .Platform$file.sep,"MODEL", sep=""))
if (!file.exists(modelname))
model.random[i] = "NoModelName"
else
model.random[i] = inla.trim(readLines(modelname, n=1L))
}
summary.random = list()
summary.random[[n.random]] = NA
size.random = list()
size.random[[n.random]] = NA
if (return.marginals.random) {
marginals.random = list()
marginals.random[[n.random]] = NA
} else {
marginals.random = NULL
}
for(i in 1L:n.random) {
if (debug)
print(paste("read random ", i , " of ", n.random))
##read the summary
file= paste(results.dir, .Platform$file.sep, random[i], sep="")
dir.random = dir(file)
if (length(dir.random) > 4L) {
dd = matrix(inla.read.binary.file(file=paste(file, .Platform$file.sep,"summary.dat", sep="")), ncol=3L, byrow=TRUE)
col.nam = c("ID","mean","sd")
##read quantiles if existing
if (debug)
cat("...quantiles.dat if any\n")
if (length(grep("^quantiles.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"quantiles.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L]),"quant", sep=""))
dd = cbind(dd, t(qq))
}
if (length(grep("^mode.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"mode.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, "mode")
dd = cbind(dd, t(qq))
}
##read cdf if existing
if (debug)
cat("...cdf.dat if any\n")
if (length(grep("^cdf.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"cdf.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L])," cdf", sep=""))
dd = cbind(dd, t(qq))
}
##read kld
if (debug)
cat("...kld\n")
kld1 = matrix(inla.read.binary.file(file=paste(file, .Platform$file.sep,"symmetric-kld.dat", sep="")),
ncol=2L, byrow=TRUE)
qq = kld1[, 2L, drop=FALSE]
dd = cbind(dd, qq)
if (debug)
cat("...kld done\n")
col.nam = c(col.nam, "kld")
colnames(dd) = col.nam
summary.random[[i]] = as.data.frame(dd)
if (return.marginals.random) {
xx = inla.read.binary.file(paste(file, .Platform$file.sep,"marginal-densities.dat", sep=""))
rr = inla.interpret.vector.list(xx, debug=debug)
rm(xx)
if (!is.null(rr)) {
nd = length(rr)
names(rr) = paste("index.", as.character(1L:nd), sep="")
names.rr = names(rr)
for(j in 1L:nd) {
colnames(rr[[j]]) = c("x", "y")
if (inla.internal.experimental.mode) {
class(rr[[j]]) = "inla.marginal"
attr(rr[[j]], "inla.tag") = paste("marginal random", names.random[i], names.rr[j])
}
}
}
if (inla.internal.experimental.mode) {
class(rr) = "inla.marginals"
attr(rr, "inla.tag") = paste("marginals random", names.random[i])
}
marginals.random[[i]] = rr
} else {
stopifnot(is.null(marginals.random))
}
} else {
N.file = paste(file, .Platform$file.sep,"N", sep="")
if (!file.exists(N.file)) {
N = 0L
} else {
N = scan(file=N.file, what = numeric(0L), quiet=TRUE)
}
summary.random[[i]] = data.frame("mean" = rep(NA, N), "sd" = rep(NA, N), "kld" = rep(NA, N))
marginals.random = NULL
}
size.random[[i]] = inla.collect.size(file)
}
names(summary.random) = names.random
## could be that marginals.random is a list of lists of NULL or NA
if (!is.null(marginals.random)) {
if (all(sapply(marginals.random, function(x) (is.null(x) || is.na(x)))))
marginals.random = NULL
}
if (!is.null(marginals.random) && (length(marginals.random) > 0L)) {
names(marginals.random) = names.random
}
} else {
if (debug)
cat("No random effets\n")
model.random=NULL
summary.random=NULL
marginals.random=NULL
size.random = NULL
}
res = list(model.spde2.blc=model.random,
summary.spde2.blc= lapply(summary.random, as.data.frame),
marginals.spde2.blc=marginals.random,
size.spde2.blc = size.random)
return(res)
}
`inla.collect.spde3.blc` =
function(results.dir,
return.marginals.random,
debug = FALSE)
{
## a copy from collect.random
alldir = dir(results.dir)
random = alldir[grep("^spde3.blc", alldir)]
n.random = length(random)
if (debug)
print("collect random effects")
##read the names and model of the random effects
if (n.random > 0L) {
names.random = character(n.random)
model.random = inla.trim(character(n.random))
for(i in 1L:n.random) {
tag = paste(results.dir, .Platform$file.sep, random[i], .Platform$file.sep,"TAG", sep="")
if (!file.exists(tag))
names.random[i] = "missing NAME"
else
names.random[i] = readLines(tag, n=1L)
modelname = inla.trim(paste(results.dir, .Platform$file.sep, random[i], .Platform$file.sep,"MODEL", sep=""))
if (!file.exists(modelname))
model.random[i] = "NoModelName"
else
model.random[i] = inla.trim(readLines(modelname, n=1L))
}
summary.random = list()
summary.random[[n.random]] = NA
size.random = list()
size.random[[n.random]] = NA
if (return.marginals.random) {
marginals.random = list()
marginals.random[[n.random]] = NA
} else {
marginals.random = NULL
}
for(i in 1L:n.random) {
if (debug)
print(paste("read random ", i , " of ", n.random))
##read the summary
file= paste(results.dir, .Platform$file.sep, random[i], sep="")
dir.random = dir(file)
if (length(dir.random) > 4L) {
dd = matrix(inla.read.binary.file(file=paste(file, .Platform$file.sep,"summary.dat", sep="")), ncol=3L, byrow=TRUE)
col.nam = c("ID","mean","sd")
##read quantiles if existing
if (debug)
cat("...quantiles.dat if any\n")
if (length(grep("^quantiles.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"quantiles.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L]),"quant", sep=""))
dd = cbind(dd, t(qq))
}
if (length(grep("^mode.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"mode.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, "mode")
dd = cbind(dd, t(qq))
}
##read cdf if existing
if (debug)
cat("...cdf.dat if any\n")
if (length(grep("^cdf.dat$", dir.random))==1L) {
xx = inla.interpret.vector(inla.read.binary.file(paste(file, .Platform$file.sep,"cdf.dat", sep="")),
debug=debug)
len = dim(xx)[2L]
qq = xx[, seq(2L, len, by=2L), drop=FALSE]
col.nam = c(col.nam, paste(as.character(xx[, 1L])," cdf", sep=""))
dd = cbind(dd, t(qq))
}
##read kld
if (debug)
cat("...kld\n")
kld1 = matrix(inla.read.binary.file(file=paste(file, .Platform$file.sep,"symmetric-kld.dat", sep="")),
ncol=2L, byrow=TRUE)
qq = kld1[, 2L, drop=FALSE]
dd = cbind(dd, qq)
if (debug)
cat("...kld done\n")
col.nam = c(col.nam, "kld")
colnames(dd) = col.nam
summary.random[[i]] = as.data.frame(dd)
if (return.marginals.random) {
xx = inla.read.binary.file(paste(file, .Platform$file.sep,"marginal-densities.dat", sep=""))
rr = inla.interpret.vector.list(xx, debug=debug)
rm(xx)
if (!is.null(rr)) {
nd = length(rr)
names(rr) = paste("index.", as.character(1L:nd), sep="")
names.rr = names(rr)
for(j in 1L:nd) {
colnames(rr[[j]]) = c("x", "y")
if (inla.internal.experimental.mode) {
class(rr[[j]]) = "inla.marginal"
attr(rr[[j]], "inla.tag") = paste("marginal random", names.random[i], names.rr[j])
}
}
}
if (inla.internal.experimental.mode) {
class(rr) = "inla.marginals"
attr(rr, "inla.tag") = paste("marginals random", names.random[i])
}
marginals.random[[i]] = rr
} else {
stopifnot(is.null(marginals.random))
}
} else {
N.file = paste(file, .Platform$file.sep,"N", sep="")
if (!file.exists(N.file)) {
N = 0L
} else {
N = scan(file=N.file, what = numeric(0L), quiet=TRUE)
}
summary.random[[i]] = data.frame("mean" = rep(NA, N), "sd" = rep(NA, N), "kld" = rep(NA, N))
marginals.random = NULL
}
size.random[[i]] = inla.collect.size(file)
}
names(summary.random) = names.random
## could be that marginals.random is a list of lists of NULL or NA
if (!is.null(marginals.random)) {
if (all(sapply(marginals.random, function(x) (is.null(x) || is.na(x)))))
marginals.random = NULL
}
if (!is.null(marginals.random) && (length(marginals.random) > 0L)) {
names(marginals.random) = names.random
}
} else {
if (debug)
cat("No random effets\n")
model.random=NULL
summary.random=NULL
marginals.random=NULL
size.random = NULL
}
res = list(model.spde3.blc=model.random,
summary.spde3.blc= lapply(summary.random, as.data.frame),
marginals.spde3.blc=marginals.random,
size.spde3.blc = size.random)
return(res)
}
`inla.image.reduce` = function(im, image.dim=256)
{
## reduce image IM to image.dim IMAGE.DIM and return the image as a matrix.
## order the indices so the output can be plotted by image()
if ((class(im) != "pixmapGrey") || (im@size[1L] != im@size[2L])) {
return (im)
} else {
return (im@grey)
}
## do not need this anymore as we do this in GMRFLib.
if (FALSE) {
if (image.dim >= im@size[1L]) {
n = as.integer(im@size[1L])
x = matrix(NA, n, n)
for(j in 1L:n)
x[j, n-(1L:n)+1L] = im@grey[1L:n, j]
return (x)
}
block = ceiling(im@size[1L]/image.dim)
n = floor(im@size[1L]/block)
ii = jj = 0L
x = matrix(NA, n, n)
for(i in seq(1L, im@size[1L]-block+1L, by=block)) {
ii = ii + 1L
jj = 0L
for(j in seq(1L, im@size[1L]-block+1L, by=block)) {
jj = jj + 1L
x[jj, n-ii+1L] = min(im@grey[i:(i+block-1L), j:(j+block-1L)])
}
}
return (x)
}
}
`inla.collect.offset.linear.predictor` = function(results.dir, debug = FALSE)
{
filename = paste(results.dir, "/totaloffset/totaloffset.dat", sep="")
stopifnot(file.exists(filename))
xx = inla.read.binary.file(filename)
return (list(offset.linear.predictor = xx))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.