HermesData-class | R Documentation |
HermesData
and RangedHermesData
The HermesData
class is an extension of SummarizedExperiment::SummarizedExperiment
with additional validation criteria.
HermesData(object)
HermesDataFromMatrix(counts, ...)
object |
( |
counts |
( |
... |
additional arguments, e.g. |
The additional criteria are:
The first assay must be counts
containing non-missing, integer, non-negative values.
Note that rename()
can be used to edit the assay name to counts
if needed.
The following columns must be in rowData
:
symbol
(also often called HGNC
or similar, example: "INMT"
)
desc
(the gene name, example: "indolethylamine N-methyltransferase"
)
chromosome
(the chromosome as string, example: "7"
)
size
(the size of the gene in base pairs, e.g 5468
)
low_expression_flag
(can be populated with add_quality_flags()
)
The following columns must be in colData
:
low_depth_flag
(can be populated with add_quality_flags()
)
tech_failure_flag
(can be populated with add_quality_flags()
)
The object must have unique row and column names. The row names are the gene names and the column names are the sample names.
Analogously, RangedHermesData
is an extension of
SummarizedExperiment::RangedSummarizedExperiment
and has the same
additional validation requirements. Methods can be defined for both classes at the
same time with the AnyHermesData
signature.
A Biobase::ExpressionSet
object can be imported by using the
SummarizedExperiment::makeSummarizedExperimentFromExpressionSet()
function to
first convert it to a SummarizedExperiment::SummarizedExperiment
object before
converting it again into a HermesData
object.
An object of class AnyHermesData
(HermesData
or RangedHermesData
).
prefix
common prefix of the gene IDs (row names).
Note that we use S4Vectors::setValidity2()
to define the validity
method, which allows us to turn off the validity checks in internal
functions where intermediate objects may not be valid within the scope of
the function.
It can be helpful to convert character and logical variables to factors in colData()
(before or after the HermesData
creation). We provide the utility function
df_cols_to_factor()
to simplify this task, but leave it to the user to allow
for full control of the details.
rename()
for renaming columns of the input data.
# Convert an `ExpressionSet` to a `RangedSummarizedExperiment`.
ranged_summarized_experiment <- makeSummarizedExperimentFromExpressionSet(expression_set)
# Then convert to `RangedHermesData`.
HermesData(ranged_summarized_experiment)
# Create objects starting from a `SummarizedExperiment`.
hermes_data <- HermesData(summarized_experiment)
hermes_data
# Create objects from a matrix. Note that additional arguments are not required but possible.
counts_matrix <- assay(summarized_experiment)
counts_hermes_data <- HermesDataFromMatrix(counts_matrix)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.