h_diff_expr_voom | R Documentation |
limma
/voom Differential Expression AnalysisThis helper functions performs the differential expression analysis with the voom
method from the limma
package (via limma::voom()
, limma::lmFit()
and limma::eBayes()
)
for given counts in a AnyHermesData object and a corresponding design
matrix.
h_diff_expr_voom(object, design, ...)
object |
( |
design |
( |
... |
additional arguments internally passed to |
A data frame with columns log2_fc
(estimated log2 fold change),
stat
(moderated t-statistic), p_val
(raw p-value), adj_p_pval
(Benjamini-Hochberg adjusted p-value).
limma_packagehermes
\insertRefvoom_methodhermes
object <- hermes_data
# Create the design matrix corresponding to the factor of interest.
design <- model.matrix(~SEX, colData(object))
# Then perform the differential expression analysis.
result <- h_diff_expr_voom(object, design)
head(result)
# Sometimes we might want to specify method details.
result2 <- h_diff_expr_voom(object, design, trend = TRUE, robust = TRUE)
head(result2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.