# Jake Yeung
# Date of Creation: 2021-08-04
# File: ~/projects/scChIX/analysis_scripts/6-fit_pseudotime_K9me3.R
# Fit pseudotime on single+dbl UMAP
rm(list=ls())
library(dplyr)
library(tidyr)
library(ggplot2)
library(data.table)
library(Matrix)
library(topicmodels)
library(hash)
library(igraph)
library(umap)
library(scchicFuncs)
library(scChIX)
library(JFuncs)
# Functions ---------------------------------------------------------------
FitGlmRowPtime.withse <- function(jrow, cnames, dat.annots.filt.mark, ncuts.cells.mark, jbin = NULL, returnobj=FALSE, with.se = FALSE){
# use Offset by size of library
# https://stats.stackexchange.com/questions/66791/where-does-the-offset-go-in-poisson-negative-binomial-regression
# fit GLM for a row of a sparse matrix, should save some space?
# pvalue by deviance goodness of fit: https://thestatsgeek.com/2014/04/26/deviance-goodness-of-fit-test-for-poisson-regression/
# offset is in log because the model says the log counts is equal to RHS
if (!is.null(nrow(jrow))){
# probably a matrix of many rows, sum them up
print(paste("Merging", nrow(jrow), "rows"))
row <- Matrix::colSums(jrow)
}
dat <- data.frame(cell = cnames, ncuts = jrow, stringsAsFactors = FALSE) %>%
left_join(., dat.annots.filt.mark, by = "cell") %>%
left_join(., ncuts.cells.mark, by = "cell")
m1.pois <- glm(ncuts ~ 1 + ptime + offset(log(ncuts.total)), data = dat, family = "poisson")
mnull.pois <- glm(ncuts ~ 1 + offset(log(ncuts.total)), data = dat, family = "poisson")
if (!returnobj){
jsum <- anova(mnull.pois, m1.pois)
pval <- pchisq(jsum$Deviance[[2]], df = jsum$Df[[2]], lower.tail = FALSE)
if (!with.se){
out.dat <- data.frame(pval = pval,
dev.diff = jsum$Deviance[[2]],
df.diff = jsum$Df[[2]],
t(as.data.frame(coefficients(m1.pois))),
stringsAsFactors = FALSE)
} else {
estimates <- summary(m1.pois)$coefficients[, "Estimate"]
names(estimates) <- make.names(paste(names(estimates), ".Estimate", sep = ""))
stderrors <- summary(m1.pois)$coefficients[, "Std. Error"]
names(stderrors) <- make.names(paste(names(stderrors), ".StdError", sep = ""))
out.dat <- data.frame(pval = pval,
dev.diff = jsum$Deviance[[2]],
df.diff = jsum$Df[[2]],
t(as.data.frame(c(estimates, stderrors))),
stringsAsFactors = FALSE)
}
if (!is.null(jbin)){
out.dat$bin <- jbin
rownames(out.dat) <- jbin
}
return(out.dat)
} else {
return(list(fit.full = m1.pois, fit.null = mnull.pois, dat.input = dat))
}
}
# Constants ---------------------------------------------------------------
ncores <- 32
outmain <- "/home/jyeung/hub_oudenaarden/jyeung/data/dblchic/gastrulation/from_analysis/glm_fits_outputs"
jprefix <- "var_filtered"
jsuffix <- "manual2nocenter_K36_K9m3_K36-K9m3"
jname <- paste(jprefix, jsuffix, sep = "_")
outdir <- file.path(outmain, jsuffix)
dir.create(outdir)
# outf <- file.path(outdir, paste0("glm_poisson_fits_output.", jsuffix, ".", Sys.Date(), ".RData"))
outf <- file.path(outdir, paste0("glm_poisson_fits_output.discrete.", jsuffix, ".", Sys.Date(), ".RData"))
jsettings <- umap.defaults
jsettings$n_neighbors <- 30
jsettings$min_dist <- 0.1
jsettings$random_state <- 123
# Check whether run on projection or on mixed -----------------------------
# projection
inf.meta.proj <- "/home/jyeung/hub_oudenaarden/jyeung/data/dblchic/gastrulation/from_analysis/scchix_downstream_plots/celltyping_after_scchix/var_filtered_manual2nocenter_K36_K9m3_K36-K9m3/celltyping_K9m3_first_try.2021-08-02.txt"
dat.meta.proj <- fread(inf.meta.proj)
ggplot(dat.meta.proj, aes(x = umap1, y = umap2, color = cluster)) +
geom_point() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
# mixed
inf.mixed <- "/home/jyeung/hub_oudenaarden/jyeung/data/dblchic/gastrulation/LDA_scchix_outputs/from_pipeline_unmixed_singles_LDA_together/var_filtered_manual2nocenter_K36_K9m3_K36-K9m3/lda_outputs.scchix_inputs_clstr_by_celltype_K36-K9m3.removeNA_FALSE-merged_mat.K9m3.K-30.binarize.FALSE/ldaOut.scchix_inputs_clstr_by_celltype_K36-K9m3.removeNA_FALSE-merged_mat.K9m3.K-30.Robj"
load(inf.mixed, v=T)
tm.result <- posterior(out.lda)
dat.umap <- DoUmapAndLouvain(tm.result$topics, jsettings = jsettings)
ggplot(dat.umap, aes(x = umap1, y = umap2, color = louvain)) +
geom_point() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
cell2ctype <- hash::hash(dat.meta.proj$cell, dat.meta.proj$cluster)
# compare with dat.umap
dat.umap$ctype <- sapply(dat.umap$cell, function(x) cell2ctype[[x]])
ggplot(dat.umap, aes(x = umap1, y = umap2, color = ctype)) +
geom_point() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
# Use stage as ptime ------------------------------------------------------
# fit on UMAP
clsts.keep <- c("Early", "Intermediate1", "Intermediate2", "Late")
dat.umap.filter <- subset(dat.umap, ctype %in% clsts.keep) %>%
rowwise() %>%
mutate(stage = strsplit(cell, split = "-")[[1]][[1]]) %>%
mutate(stage.numeric = as.numeric(gsub("p", ".", gsub("^E", "", stage)))) %>%
filter(umap2 > -0.5) %>%
ungroup() %>%
mutate(umap2 = as.vector(0.1 * scale(umap2, center = TRUE, scale = TRUE)),
umap1 = as.vector(scale(umap1, center = TRUE, scale = TRUE))) %>%
rowwise() %>%
mutate(ptime = stage.numeric)
m4 <- ggplot(dat.umap.filter, aes(x = umap1, y = umap2, color = as.character(ptime))) +
geom_point() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
# Fit genes that follow ptime --------------------------------------------------------------
# load raw counts
cells.keep <- subset(dat.umap.filter, !is.na(ptime))$cell
count.mat.filt <- count.mat[, cells.keep]
# fit poisson regression
dat.annots.filt <- subset(dat.umap.filter, cell %in% cells.keep, select = c(cell, ptime))
dat.annots.filt.othercols <- subset(dat.umap.filter, cell %in% cells.keep, select = c(-ptime))
ncuts.cells <- data.frame(cell = colnames(count.mat.filt), ncuts.total = colSums(count.mat.filt), stringsAsFactors = FALSE)
# check output
out.check <- "/home/jyeung/hub_oudenaarden/jyeung/data/dblchic/gastrulation/from_analysis/glm_fits_outputs/manual2nocenter_K36_K9m3_K36-K9m3/glm_poisson_fits_output.discrete.manual2nocenter_K36_K9m3_K36-K9m3.2021-08-05.RData"
assertthat::assert_that(file.exists(out.check))
load(out.check, v=T)
jrowname <- names(jfits.lst)
names(jrowname) <- jrowname
pval.lst <- lapply(jfits.lst, function(jfit){
jfit$pval
})
slope.lst <- lapply(jfits.lst, function(jfit){
jfit$ptime.Estimate
})
dat.slope.pval <- lapply(jrowname, function(jrowname){
dat.out <- data.frame(bin = jrowname, pval = pval.lst[[jrowname]], slope = slope.lst[[jrowname]], stringsAsFactors = FALSE)
}) %>%
bind_rows()
ggplot(dat.slope.pval, aes(x = slope)) + geom_histogram(bins = 1000) +
theme_bw() + theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
coord_cartesian(xlim = c(-1, 1)) +
geom_vline(xintercept = 0, linetype = "dotted", size = 2, color = "red")
ggplot(dat.slope.pval, aes(x = pval)) + geom_histogram(bins = 100) +
theme_bw() + theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
coord_cartesian(xlim = c(0, 1))
ggplot(dat.slope.pval, aes(x = slope, y = -log10(pval))) + geom_point() +
theme_bw() + theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
geom_vline(xintercept = 0, linetype = "dotted", size = 1, color = "red") +
geom_hline(yintercept = 0, linetype = "dotted", size = 1, color = "red") +
coord_cartesian(xlim = c(-3, 3))
# what are the top hits?
head(print(dat.slope.pval %>% arrange(pval)))
ggplot(dat.annots.filt %>% left_join(., dat.annots.filt.othercols), aes(x = umap1, y = umap2, color = ptime)) +
geom_point() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
dat.slope.pval.sorted <- dat.slope.pval %>%
arrange(pval) %>%
mutate(qval = p.adjust(pval)) %>%
filter(slope < 0)
print(head(dat.slope.pval.sorted))
jbin <- "chr3:106150000-106200000"
jbin <- "chr9:3000000-3050000"
jbin <- dat.slope.pval.sorted$bin[5]
jbin <- dat.slope.pval.sorted$bin[3]
jbin <- dat.slope.pval.sorted$bin[4]
jbin <- dat.slope.pval.sorted$bin[5]
jbin <- dat.slope.pval.sorted$bin[6]
jbin <- dat.slope.pval.sorted$bin[7]
jbin <- dat.slope.pval.sorted$bin[2]
jbin <- dat.slope.pval.sorted$bin[3]
jbin <- dat.slope.pval.sorted$bin[2]
jbin <- dat.slope.pval.sorted$bin[3]
jbin <- dat.slope.pval.sorted$bin[4]
jbin <- dat.slope.pval.sorted$bin[1]
jcheck <- data.frame(counts = count.mat.filt[jbin, ], cell = colnames(count.mat.filt), stringsAsFactors = FALSE) %>%
left_join(., dat.annots.filt) %>%
left_join(., subset(dat.umap, select = c(cell, umap1, umap2))) %>%
rowwise() %>%
mutate(stage = strsplit(cell, split = "-")[[1]][[1]]) %>%
ungroup() %>%
mutate(ptime.factor = factor(ptime, levels = c(9.5, 10.5, 11.5)))
jcheck.sum <- jcheck %>%
group_by(ptime.factor) %>%
summarise(nbr.nonzeros = nnzero(counts),
ncells = length(counts)) %>%
ungroup() %>%
mutate(frac.nonzeros = nbr.nonzeros / ncells)
ggplot(jcheck, aes(x = ptime.factor, y = log(counts + 1))) +
geom_point(alpha = 0.1) +
geom_boxplot() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
ggplot(jcheck.sum, aes(x = ptime.factor, y = frac.nonzeros)) +
geom_col() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
# plot on UMAP
ggplot(jcheck, aes(x = umap1, y = umap2, color = counts)) +
theme_bw() +
facet_wrap(~ptime.factor) +
geom_point() +
scale_color_viridis_c() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.