Description Usage Arguments Details Value Author(s) References See Also
Model-implied variance-covariance matrix (\boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right)) using the LISREL notation for structural equations with latent variables.
1 |
LY |
\boldsymbol{Λ}_{\mathbf{y}} p \times m matrix of factor loadings (\boldsymbol{λ}). p is the number of observed indicators (\mathbf{y}) and m is the number of latent endogenous variables (\boldsymbol{η}). |
LX |
\boldsymbol{Λ}_{\mathbf{x}} q \times n matrix of factor loadings (\boldsymbol{λ}). q is the number of observed indicators (\mathbf{x}) and n is the number of latent exogenous variables (\boldsymbol{ξ}). |
TE |
\boldsymbol{Θ_{\boldsymbol{ε}}} p \times p matrix of residual variances and covariances for \mathbf{y} (\boldsymbol{ε}). |
TD |
\boldsymbol{Θ_{\boldsymbol{δ}}} q \times q matrix of residual variances and covariances for \mathbf{x} (\boldsymbol{δ}). |
BE |
\mathbf{B}_{m \times m} coefficient matrix for endogenous variables. |
I |
\mathbf{I}_{m \times m} identity matrix. |
GA |
\boldsymbol{Γ}_{m \times n} coefficient matrix for exogenous variables. |
PS |
\boldsymbol{Ψ}_{m \times m} variance-covariance of \boldsymbol{ζ}. \boldsymbol{ζ} is a matrix of residual variances and covariances in regression equations. |
PH |
\boldsymbol{Φ}_{n \times n} variance-covariance matrix of \boldsymbol{ξ}. |
Combines
\boldsymbol{Σ}_{\mathbf{yy}} ≤ft( \boldsymbol{θ} \right)
(from lisrel_yy
),
\boldsymbol{Σ}_{\mathbf{yx}} ≤ft( \boldsymbol{θ} \right)
(from lisrel_yx
),
\boldsymbol{Σ}_{\mathbf{xy}} ≤ft( \boldsymbol{θ} \right)
(from lisrel_xy
),
and
\boldsymbol{Σ}_{\mathbf{xx}} ≤ft( \boldsymbol{θ} \right)
(from lisrel_xx
)
to produce
\boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right)
.
The variance-covariance matrices are derived using the following equations
\boldsymbol{Σ}_{\mathbf{yy}} ≤ft( \boldsymbol{θ} \right) = \boldsymbol{Λ}_{\mathbf{y}} ≤ft( \mathbf{I} - \mathbf{B} \right)^{-1} ≤ft( \boldsymbol{Γ} \boldsymbol{Φ} \boldsymbol{Γ}^{T} + \boldsymbol{Ψ} \right) ≤ft[ ≤ft( \mathbf{I} - \mathbf{B} \right)^{-1} \right]^{T} \boldsymbol{Λ}_{\mathbf{y}}^{T} + \boldsymbol{Θ}_{\boldsymbol{ε}}
\boldsymbol{Σ}_{\mathbf{yx}} ≤ft( \boldsymbol{θ} \right) = \boldsymbol{Λ}_{\mathbf{y}} ≤ft( \mathbf{I} - \mathbf{B} \right)^{-1} \boldsymbol{Γ} \boldsymbol{Φ} \boldsymbol{Λ}_{\mathbf{x}}^{T}
\boldsymbol{Σ}_{\mathbf{xy}} ≤ft( \boldsymbol{θ} \right) = \boldsymbol{Λ}_{\mathbf{x}} \boldsymbol{Φ} \boldsymbol{Γ}^{T} ≤ft[ ≤ft( \mathbf{I} - \mathbf{B} \right)^{-1} \right]^{T} \boldsymbol{Λ}_{\mathbf{y}}^{T}
\boldsymbol{Σ}_{\mathbf{xx}} ≤ft( \boldsymbol{θ} \right) = \boldsymbol{Λ}_{\mathbf{x}} \boldsymbol{Φ} \boldsymbol{Λ}_{\mathbf{y}}^{T} + \boldsymbol{Θ}_{\boldsymbol{δ}} .
Returns the model-implied variance-covariance matrix
(\boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right))
derived from the
\boldsymbol{Λ}_{\mathbf{y}}
(LY
),
\boldsymbol{Λ}_{\mathbf{x}}
(LX
),
\boldsymbol{Θ}_{\boldsymbol{ε}}
(TE
),
\boldsymbol{Θ}_{\boldsymbol{δ}}
(TD
),
\mathbf{B}
(BE
),
\mathbf{I}
(I
),
\boldsymbol{Γ}
(GA
),
\boldsymbol{Ψ}
(PS
),
and
\boldsymbol{Φ}
(PH
)
matrices.
Ivan Jacob Agaloos Pesigan
Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
Jöreskog, K. G., & Sörbom, D. (1996). Lisrel 8: User's reference guide (2nd ed.). Scientific Software.
Other SEM notation functions:
eqs_mu()
,
eqs()
,
lisrel_fa()
,
lisrel_obs_xy()
,
lisrel_obs_yx()
,
lisrel_obs_yy()
,
lisrel_obs()
,
lisrel_xx()
,
lisrel_xy()
,
lisrel_yx()
,
lisrel_yy()
,
ram_mu()
,
ram_m()
,
ram_s()
,
ram()
,
sem_fa()
,
sem_lat()
,
sem_obs()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.