R/GAPIT.mlmm.R

Defines functions mlmm

############################################################################################################################################## 
 ###MLMM - Multi-Locus Mixed Model 
 ###SET OF FUNCTIONS TO CARRY GWAS CORRECTING FOR POPULATION STRUCTURE WHILE INCLUDING COFACTORS THROUGH A STEPWISE-REGRESSION APPROACH 
 ####### 
 # 
 ##note: require EMMA 
 #library(emma) 
 #source('emma.r') 
 # 
 ##REQUIRED DATA & FORMAT 
 # 
 #PHENOTYPE - Y: a vector of length m, with names(Y)=individual names 
 #GENOTYPE - X: a n by m matrix, where n=number of individuals, m=number of SNPs, with rownames(X)=individual names, and colnames(X)=SNP names 
 #KINSHIP - K: a n by n matrix, with rownames(K)=colnames(K)=individual names 
 #each of these data being sorted in the same way, according to the individual name 
 # 
 ##FOR PLOTING THE GWAS RESULTS 
 #SNP INFORMATION - snp_info: a data frame having at least 3 columns: 
 # - 1 named 'SNP', with SNP names (same as colnames(X)), 
 # - 1 named 'Chr', with the chromosome number to which belong each SNP 
 # - 1 named 'Pos', with the position of the SNP onto the chromosome it belongs to. 
 ####### 
 # 
 ##FUNCTIONS USE 
 #save this file somewhere on your computer and source it! 
 #source('path/mlmm.r') 
 # 
 ###FORWARD + BACKWARD ANALYSES 
 #mygwas<-mlmm(Y,X,K,nbchunks,maxsteps) 
 #X,Y,K as described above 
 #nbchunks: an integer defining the number of chunks of X to run the analysis, allows to decrease the memory usage ==> minimum=2, increase it if you do not have enough memory 
 #maxsteps: maximum number of steps desired in the forward approach. The forward approach breaks automatically once the pseudo-heritability is close to 0, 
 #			however to avoid doing too many steps in case the pseudo-heritability does not reach a value close to 0, this parameter is also used. 
 #			It's value must be specified as an integer >= 3 
 # 
 ###RESULTS 
 # 
 ##STEPWISE TABLE 
 #mygwas$step_table 
 # 
 ##PLOTS 
 # 
 ##PLOTS FORM THE FORWARD TABLE 
 #plot_step_table(mygwas,type=c('h2','maxpval','BIC','extBIC')) 
 # 
 ##RSS PLOT 
 #plot_step_RSS(mygwas) 
 # 
 ##GWAS MANHATTAN PLOTS 
 # 
 #FORWARD STEPS 
 #plot_fwd_GWAS(mygwas,step,snp_info,pval_filt) 
 #step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor) 
 #snp_info as described above 
 #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot 
 # 
 #OPTIMAL MODELS 
 #Automatic identification of the optimal models within the forwrad-backward models according to the extendedBIC or multiple-bonferonni criteria 
 # 
 #plot_opt_GWAS(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt) 
 #snp_info as described above 
 #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot 
 # 
 ##GWAS MANHATTAN PLOT ZOOMED IN A REGION OF INTEREST 
 #plot_fwd_region(mygwas,step,snp_info,pval_filt,chrom,pos1,pos2) 
 #step=the step to be plotted in the forward approach, where 1 is the EMMAX scan (no cofactor) 
 #snp_info as described above 
 #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot 
 #chrom is an integer specifying the chromosome on which the region of interest is 
 #pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info 
 # 
 #plot_opt_region(mygwas,opt=c('extBIC','mbonf'),snp_info,pval_filt,chrom,pos1,pos2) 
 #snp_info as described above 
 #pval_filt=a p-value threshold for filtering the output, only p-vals below this threshold will be displayed in the plot 
 #chrom is an integer specifying the chromosome on which the region of interest is 
 #pos1, pos2 are integers delimiting the region of interest in the same unit as Pos in snp_info 
 # 
 ##QQPLOTS of pvalues 
 #qqplot_fwd_GWAS(mygwas,nsteps) 
 #nsteps=maximum number of forward steps to be displayed 
 # 
 #qqplot_opt_GWAS(mygwas,opt=c('extBIC','mbonf')) 
 # 
 ############################################################################################################################################## 
  
 mlmm<-function(Y,X,K,nbchunks,maxsteps,thresh = NULL) { 
  
 n<-length(Y) 
 m<-ncol(X) 
  
 stopifnot(ncol(K) == n) 
 stopifnot(nrow(K) == n) 
 stopifnot(nrow(X) == n) 
 stopifnot(nbchunks >= 2) 
 stopifnot(maxsteps >= 3) 
  
 #INTERCEPT 
  
 Xo<-rep(1,n) 
  
 #K MATRIX NORMALISATION 
  
 K_norm<-(n-1)/sum((diag(n)-matrix(1,n,n)/n)*K)*K 
 rm(K) 
  
 #step 0 : NULL MODEL 
 cof_fwd<-list() 
 cof_fwd[[1]]<-as.matrix(Xo) 
 colnames(cof_fwd[[1]])<-'Xo' 
  
 mod_fwd<-list() 
 mod_fwd[[1]]<-emma.REMLE(Y,cof_fwd[[1]],K_norm) 
 herit_fwd<-list() 
 herit_fwd[[1]]<-mod_fwd[[1]]$vg/(mod_fwd[[1]]$vg+mod_fwd[[1]]$ve) 
  
 RSSf<-list() 
 RSSf[[1]]<-'NA' 
  
 RSS_H0<-list() 
 RSS_H0[[1]]<-'NA' 
  
 df1<-1 
 df2<-list() 
 df2[[1]]<-'NA' 
  
 Ftest<-list() 
 Ftest[[1]]<-'NA' 
  
 pval<-list() 
 pval[[1]]<-'NA' 
  
 fwd_lm<-list() 
 # markers effect by jiabo 20220817
 effect<-list()
 effect0<-list()
 effect0[[1]]<-'NA'

 cat('null model done! pseudo-h=',round(herit_fwd[[1]],3),'\n') 
  
 #step 1 : EMMAX 
  
 M<-solve(chol(mod_fwd[[1]]$vg*K_norm+mod_fwd[[1]]$ve*diag(n))) 
 Y_t<-crossprod(M,Y) 
 cof_fwd_t<-crossprod(M,cof_fwd[[1]]) 
 fwd_lm[[1]]<-summary(stats::lm(Y_t~0+cof_fwd_t)) 
 Res_H0<-fwd_lm[[1]]$residuals 
 Q_<-qr.Q(qr(cof_fwd_t)) 

 RSS<-list() 
 for (j in 1:(nbchunks-1)) { 
 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) 
 RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) 
 effect[[j]]<-apply(X_t,2,function(x){stats::lsfit(x,Res_H0,intercept = FALSE)$coefficients})
 rm(X_t)} 
 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[1]])-1))]) 
 RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) 
 effect[[nbchunks]]<-apply(X_t,2,function(x){stats::lsfit(x,Res_H0,intercept = FALSE)$coefficients})
 rm(X_t,j) 

 RSSf[[2]]<-unlist(RSS) 
 RSS_H0[[2]]<-sum(Res_H0^2) 
 # beta=Res_H0-sqrt(RSSf[[2]])
 # print(length(beta))
 # print(head(beta))
 # print("!!!!")
 # print(length(RSSf[[2]]))
 df2[[2]]<-n-df1-ncol(cof_fwd[[1]]) 
 Ftest[[2]]<-(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1)*df2[[2]]/df1 
 # print(length(RSSf[[2]]))
 # print(head(rep(RSS_H0[[2]],length(RSSf[[2]]))/RSSf[[2]]-1))
 # print(head(Ftest[[2]]))
 pval[[2]] <- stats::pf(Ftest[[2]],df1,df2[[2]],lower.tail=FALSE) 
 effect0[[2]]=unlist(effect) ###
# print(length(pval[[2]]))
 cof_fwd[[2]]<-cbind(cof_fwd[[1]],X[,colnames(X) %in% names(which(RSSf[[2]]==min(RSSf[[2]]))[1])]) 
 colnames(cof_fwd[[2]])<-c(colnames(cof_fwd[[1]]),names(which(RSSf[[2]]==min(RSSf[[2]]))[1])) 
 mod_fwd[[2]]<-emma.REMLE(Y,cof_fwd[[2]],K_norm) 
 herit_fwd[[2]]<-mod_fwd[[2]]$vg/(mod_fwd[[2]]$vg+mod_fwd[[2]]$ve) 
 rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS) 
  
 cat('step 1 done! pseudo-h=',round(herit_fwd[[2]],3),'\n') 

 #FORWARD 
  
 for (i in 3:(maxsteps)) { 
 if (herit_fwd[[i-2]] < 0.01) break else { 
  
 M<-solve(chol(mod_fwd[[i-1]]$vg*K_norm+mod_fwd[[i-1]]$ve*diag(n))) 
 Y_t<-crossprod(M,Y) 
 cof_fwd_t<-crossprod(M,cof_fwd[[i-1]]) 
 fwd_lm[[i-1]]<-summary(stats::lm(Y_t~0+cof_fwd_t)) 
 Res_H0<-fwd_lm[[i-1]]$residuals 
 Q_ <- qr.Q(qr(cof_fwd_t)) 
  
 RSS<-list() 
 for (j in 1:(nbchunks-1)) { 
 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) 
 RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) 
 effect[[j]]<-apply(X_t,2,function(x){stats::lsfit(x,Res_H0,intercept = FALSE)$coefficients})###
 rm(X_t)} 
 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[i-1]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[i-1]])-1))]) 
 RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) 
 effect[[nbchunks]]<-apply(X_t,2,function(x){stats::lsfit(x,Res_H0,intercept = FALSE)$coefficients})###
 rm(X_t,j) 
  
 RSSf[[i]]<-unlist(RSS) 
 RSS_H0[[i]]<-sum(Res_H0^2) 
 df2[[i]]<-n-df1-ncol(cof_fwd[[i-1]]) 
 Ftest[[i]]<-(rep(RSS_H0[[i]],length(RSSf[[i]]))/RSSf[[i]]-1)*df2[[i]]/df1 
 pval[[i]] <- stats::pf(Ftest[[i]],df1,df2[[i]],lower.tail=FALSE) 
 effect0[[i]]=unlist(effect)  ###
 
 cof_fwd[[i]]<-cbind(cof_fwd[[i-1]],X[,colnames(X) %in% names(which(RSSf[[i]]==min(RSSf[[i]]))[1])]) 
 colnames(cof_fwd[[i]])<-c(colnames(cof_fwd[[i-1]]),names(which(RSSf[[i]]==min(RSSf[[i]]))[1])) 
 mod_fwd[[i]]<-emma.REMLE(Y,cof_fwd[[i]],K_norm) 
 herit_fwd[[i]]<-mod_fwd[[i]]$vg/(mod_fwd[[i]]$vg+mod_fwd[[i]]$ve) 
 rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS)} 
 cat('step ',i-1,' done! pseudo-h=',round(herit_fwd[[i]],3),'\n')} 
 rm(i) 
 seqQTN=match(cof_fwd[-1],colnames(X))
 
 ##gls at last forward step 
 M<-solve(chol(mod_fwd[[length(mod_fwd)]]$vg*K_norm+mod_fwd[[length(mod_fwd)]]$ve*diag(n))) 
 Y_t<-crossprod(M,Y) 
 cof_fwd_t<-crossprod(M,cof_fwd[[length(mod_fwd)]]) 
 fwd_lm[[length(mod_fwd)]]<-summary(stats::lm(Y_t~0+cof_fwd_t)) 
  
 Res_H0<-fwd_lm[[length(mod_fwd)]]$residuals 
 Q_ <- qr.Q(qr(cof_fwd_t)) 
  
 RSS<-list() 
 for (j in 1:(nbchunks-1)) { 
 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) 
 RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) 
 effect[[j]]<-apply(X_t,2,function(x){stats::lsfit(x,Res_H0,intercept = FALSE)$coefficients})  ###
 rm(X_t)} 
 X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof_fwd[[length(mod_fwd)]])])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof_fwd[[length(mod_fwd)]])-1))]) 
 RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) 
 effect[[nbchunks]]<-apply(X_t,2,function(x){stats::lsfit(x,Res_H0,intercept = FALSE)$coefficients}) ###
 rm(X_t,j) 
  
 RSSf[[length(mod_fwd)+1]]<-unlist(RSS) 
 RSS_H0[[length(mod_fwd)+1]]<-sum(Res_H0^2) 
 df2[[length(mod_fwd)+1]]<-n-df1-ncol(cof_fwd[[length(mod_fwd)]]) 
 Ftest[[length(mod_fwd)+1]]<-(rep(RSS_H0[[length(mod_fwd)+1]],length(RSSf[[length(mod_fwd)+1]]))/RSSf[[length(mod_fwd)+1]]-1)*df2[[length(mod_fwd)+1]]/df1 
 pval[[length(mod_fwd)+1]] <- stats::pf(Ftest[[length(mod_fwd)+1]],df1,df2[[length(mod_fwd)+1]],lower.tail=FALSE) 
 effect0[[length(mod_fwd)+1]]=unlist(effect) ###
 rm(M,Y_t,cof_fwd_t,Res_H0,Q_,RSS) 
  
 ##get max pval at each forward step 
 max_pval_fwd<-vector(mode="numeric",length=length(fwd_lm)) 
 max_pval_fwd[1]<-0 
 for (i in 2:length(fwd_lm)) {max_pval_fwd[i]<-max(fwd_lm[[i]]$coef[2:i,4])} 
 rm(i) 
  
 ##get the number of parameters & Loglikelihood from ML at each step 
 mod_fwd_LL<-list() 
 # print(emma.MLE(Y,cof_fwd[[1]],K_norm)$ML)
 # print(head(Y))
 # print(head(cof_fwd[[1]]))
 # print(K_norm[1:5,1:5])
 mod_fwd_LL[[1]]<-list(nfixed=ncol(cof_fwd[[1]]),LL=emma.MLE(Y,cof_fwd[[1]],K_norm)$ML) 
 for (i in 2:length(cof_fwd)) {mod_fwd_LL[[i]]<-list(nfixed=ncol(cof_fwd[[i]]),LL=emma.MLE(Y,cof_fwd[[i]],K_norm)$ML)} 
 rm(i) 
  
 cat('backward analysis','\n') 
  
 ##BACKWARD (1st step == last fwd step) 
  
 dropcof_bwd<-list() 
 cof_bwd<-list() 
 mod_bwd <- list() 
 bwd_lm<-list() 
 herit_bwd<-list() 
  
 dropcof_bwd[[1]]<-'NA' 
 cof_bwd[[1]]<-as.matrix(cof_fwd[[length(mod_fwd)]][,!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]]) 
 colnames(cof_bwd[[1]])<-colnames(cof_fwd[[length(mod_fwd)]])[!colnames(cof_fwd[[length(mod_fwd)]]) %in% dropcof_bwd[[1]]] 
 mod_bwd[[1]]<-emma.REMLE(Y,cof_bwd[[1]],K_norm) 
 herit_bwd[[1]]<-mod_bwd[[1]]$vg/(mod_bwd[[1]]$vg+mod_bwd[[1]]$ve) 
 M<-solve(chol(mod_bwd[[1]]$vg*K_norm+mod_bwd[[1]]$ve*diag(n))) 
 Y_t<-crossprod(M,Y) 
 cof_bwd_t<-crossprod(M,cof_bwd[[1]]) 
 bwd_lm[[1]]<-summary(stats::lm(Y_t~0+cof_bwd_t)) 
  
 rm(M,Y_t,cof_bwd_t) 
  
 for (i in 2:length(mod_fwd)) { 
 dropcof_bwd[[i]]<-(colnames(cof_bwd[[i-1]])[2:ncol(cof_bwd[[i-1]])])[which(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])==min(abs(bwd_lm[[i-1]]$coef[2:nrow(bwd_lm[[i-1]]$coef),3])))] 
 cof_bwd[[i]]<-as.matrix(cof_bwd[[i-1]][,!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]]) 
 colnames(cof_bwd[[i]])<-colnames(cof_bwd[[i-1]])[!colnames(cof_bwd[[i-1]]) %in% dropcof_bwd[[i]]] 
 mod_bwd[[i]]<-emma.REMLE(Y,cof_bwd[[i]],K_norm) 
 herit_bwd[[i]]<-mod_bwd[[i]]$vg/(mod_bwd[[i]]$vg+mod_bwd[[i]]$ve) 
 M<-solve(chol(mod_bwd[[i]]$vg*K_norm+mod_bwd[[i]]$ve*diag(n))) 
 Y_t<-crossprod(M,Y) 
 cof_bwd_t<-crossprod(M,cof_bwd[[i]]) 
 bwd_lm[[i]]<-summary(stats::lm(Y_t~0+cof_bwd_t)) 
 rm(M,Y_t,cof_bwd_t)} 
  
 rm(i) 
  
 ##get max pval at each backward step 
 max_pval_bwd<-vector(mode="numeric",length=length(bwd_lm)) 
 for (i in 1:(length(bwd_lm)-1)) {max_pval_bwd[i]<-max(bwd_lm[[i]]$coef[2:(length(bwd_lm)+1-i),4])} 
 max_pval_bwd[length(bwd_lm)]<-0 
  
 ##get the number of parameters & Loglikelihood from ML at each step 
 mod_bwd_LL<-list() 
 mod_bwd_LL[[1]]<-list(nfixed=ncol(cof_bwd[[1]]),LL=emma.MLE(Y,cof_bwd[[1]],K_norm)$ML) 
 for (i in 2:length(cof_bwd)) {mod_bwd_LL[[i]]<-list(nfixed=ncol(cof_bwd[[i]]),LL=emma.MLE(Y,cof_bwd[[i]],K_norm)$ML)} 
 rm(i) 
 
 cat('creating output','\n') 
  
 ##Forward Table: Fwd + Bwd Tables 
 #Compute parameters for model criteria 
 BIC<-function(x){-2*x$LL+(x$nfixed+1)*log(n)} 
 extBIC<-function(x){BIC(x)+2*lchoose(m,x$nfixed-1)} 
 # print(ncol(cof_fwd[[1]]))
 fwd_table<-data.frame(step=ncol(cof_fwd[[1]])-1,step_=paste('fwd',ncol(cof_fwd[[1]])-1,sep=''),cof='NA',ncof=ncol(cof_fwd[[1]])-1,h2=herit_fwd[[1]] 
 	,maxpval=max_pval_fwd[1],BIC=BIC(mod_fwd_LL[[1]]),extBIC=extBIC(mod_fwd_LL[[1]])) 
 for (i in 2:(length(mod_fwd))) {fwd_table<-rbind(fwd_table, 
 	data.frame(step=ncol(cof_fwd[[i]])-1,step_=paste('fwd',ncol(cof_fwd[[i]])-1,sep=''),cof=paste('+',colnames(cof_fwd[[i]])[i],sep=''),ncof=ncol(cof_fwd[[i]])-1,h2=herit_fwd[[i]] 
 	,maxpval=max_pval_fwd[i],BIC=BIC(mod_fwd_LL[[i]]),extBIC=extBIC(mod_fwd_LL[[i]])))} 
 # print(head(fwd_table))
 rm(i) 
  
 bwd_table<-data.frame(step=length(mod_fwd),step_=paste('bwd',0,sep=''),cof=paste('-',dropcof_bwd[[1]],sep=''),ncof=ncol(cof_bwd[[1]])-1,h2=herit_bwd[[1]] 
 	,maxpval=max_pval_bwd[1],BIC=BIC(mod_bwd_LL[[1]]),extBIC=extBIC(mod_bwd_LL[[1]])) 
 for (i in 2:(length(mod_bwd))) {bwd_table<-rbind(bwd_table, 
 	data.frame(step=length(mod_fwd)+i-1,step_=paste('bwd',i-1,sep=''),cof=paste('-',dropcof_bwd[[i]],sep=''),ncof=ncol(cof_bwd[[i]])-1,h2=herit_bwd[[i]] 
 	,maxpval=max_pval_bwd[i],BIC=BIC(mod_bwd_LL[[i]]),extBIC=extBIC(mod_bwd_LL[[i]])))} 
  
 rm(i,BIC,extBIC,max_pval_fwd,max_pval_bwd,dropcof_bwd) 
  
 fwdbwd_table<-rbind(fwd_table,bwd_table) 

 #RSS for plot 
 mod_fwd_RSS<-vector() 
 mod_fwd_RSS[1]<-sum((Y-cof_fwd[[1]]%*%fwd_lm[[1]]$coef[,1])^2) 
 for (i in 2:length(mod_fwd)) {mod_fwd_RSS[i]<-sum((Y-cof_fwd[[i]]%*%fwd_lm[[i]]$coef[,1])^2)} 
 mod_bwd_RSS<-vector() 
 mod_bwd_RSS[1]<-sum((Y-cof_bwd[[1]]%*%bwd_lm[[1]]$coef[,1])^2) 
 for (i in 2:length(mod_bwd)) {mod_bwd_RSS[i]<-sum((Y-cof_bwd[[i]]%*%bwd_lm[[i]]$coef[,1])^2)} 
 expl_RSS<-c(1-sapply(mod_fwd_RSS,function(x){x/mod_fwd_RSS[1]}),1-sapply(mod_bwd_RSS,function(x){x/mod_bwd_RSS[length(mod_bwd_RSS)]})) 
 h2_RSS<-c(unlist(herit_fwd),unlist(herit_bwd))*(1-expl_RSS) 
 unexpl_RSS<-1-expl_RSS-h2_RSS 
 plot_RSS<-t(apply(cbind(expl_RSS,h2_RSS,unexpl_RSS),1,cumsum)) 
  
 #GLS pvals at each step 
 pval_step<-list() 
 pval_step[[1]]<-list(out=data.frame("SNP"=colnames(X),"pval"=pval[[2]],'effect'=effect0[[2]]),"cof"=NA, "coef"=fwd_lm[[1]]$coef) 
 for (i in 2:(length(mod_fwd))) {
 	# print(head(fwd_lm))
 pval_step[[i]]<-list(out=rbind(data.frame(SNP=colnames(cof_fwd[[i]])[-1],'pval'=fwd_lm[[i]]$coef[2:i,4], 'effect'=fwd_lm[[i]]$coef[2:i,1]), 
 	data.frame(SNP=colnames(X)[-which(colnames(X) %in% colnames(cof_fwd[[i]]))],'pval'=pval[[i+1]],'effect'=effect0[[i+1]])),"cof"=colnames(cof_fwd[[i]])[-1], "coef"=fwd_lm[[i]]$coef)} 
  
 #GLS pvals for best models according to extBIC and mbonf 
  
 opt_extBIC<-fwdbwd_table[which(fwdbwd_table$extBIC==min(fwdbwd_table$extBIC))[1],] 
 opt_mbonf<-(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=0.05/m),]$ncof))[1],] 
 if(! is.null(thresh)){ 
   opt_thresh<-(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),])[which(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),]$ncof==max(fwdbwd_table[which(fwdbwd_table$maxpval<=thresh),]$ncof))[1],] 
 } 
 bestmodel_pvals<-function(model) {
 	# print(model)
    # print(substr(model$step_,start=0,stop=3))
 	if(substr(model$step_,start=0,stop=3)=='fwd') {
 		pval_step[[as.integer(substring(model$step_,first=4))+1]]} else if (substr(model$step_,start=0,stop=3)=='bwd') { 
 		cof<-cof_bwd[[as.integer(substring(model$step_,first=4))+1]] 
 		mixedmod<-emma.REMLE(Y,cof,K_norm) 
 		M<-solve(chol(mixedmod$vg*K_norm+mixedmod$ve*diag(n))) 
 		Y_t<-crossprod(M,Y) 
 		cof_t<-crossprod(M,cof) 
 		GLS_lm<-summary(stats::lm(Y_t~0+cof_t)) 
 		Res_H0<-GLS_lm$residuals 
 		Q_ <- qr.Q(qr(cof_t)) 
 		RSS<-list() 
 		for (j in 1:(nbchunks-1)) { 
 		X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j-1)*round(m/nbchunks)+1):(j*round(m/nbchunks))]) 
 		RSS[[j]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) 
 		effect[[j]]<-apply(X_t,2,function(x){stats::lsfit(x,Res_H0,intercept = FALSE)$coefficients})
 		rm(X_t)} 
 		X_t<-crossprod(M %*% (diag(n)-tcrossprod(Q_,Q_)),(X[,!colnames(X) %in% colnames(cof)])[,((j)*round(m/nbchunks)+1):(m-(ncol(cof)-1))]) 
 		RSS[[nbchunks]]<-apply(X_t,2,function(x){sum(stats::lsfit(x,Res_H0,intercept = FALSE)$residuals^2)}) 
 		effect[[nbchunks]]<-apply(X_t,2,function(x){stats::lsfit(x,Res_H0,intercept = FALSE)$coefficients})
 		rm(X_t,j) 
 		# print(dim(RSS))
 		# print(head(RSS))
 		RSSf<-unlist(RSS) 
 		RSS_H0<-sum(Res_H0^2) 
 		df2<-n-df1-ncol(cof) 
 		Ftest<-(rep(RSS_H0,length(RSSf))/RSSf-1)*df2/df1 
 		pval <- stats::pf(Ftest,df1,df2,lower.tail=FALSE) 
 		effect.all=NULL
 		for(k in 1:nbchunks)
 		{
           effect.all=append(effect.all,effect[[k]])
 		}
 		list('out'=rbind(data.frame(SNP=colnames(cof)[-1],'pval'=GLS_lm$coef[2:(ncol(cof)),4],'effect'=GLS_lm$coef[2:(ncol(cof)),1]), 
 		                 data.frame('SNP'=colnames(X)[-which(colnames(X) %in% colnames(cof))],'pval'=pval,'effect'=effect.all)), 
 		     'cof'=colnames(cof)[-1], 
 		     'coef'=GLS_lm$coef
 		     # 'coef'=RSSf
 		     )} else {cat('error \n')}} 

 opt_extBIC_out<-bestmodel_pvals(opt_extBIC)
 # print(str(opt_extBIC_out))
 # print(head(opt_extBIC_out$coef) )
 opt_mbonf_out<-bestmodel_pvals(opt_mbonf) 
 if(! is.null(thresh)){ 
   opt_thresh_out<-bestmodel_pvals(opt_thresh) 
 }
 # print(fwdbwd_table)
 # print(pval_step)
 # print(plot_RSS)
 output <- list(step_table=fwdbwd_table,pval_step=pval_step,RSSout=plot_RSS,bonf_thresh=-log10(0.05/m),opt_extBIC=opt_extBIC_out,opt_mbonf=opt_mbonf_out,seqQTN=seqQTN) 
 if(! is.null(thresh)){ 
   output$thresh <- -log10(thresh) 
   output$opt_thresh <- opt_thresh_out 
 } 
 return(output) 
 } 
jiabowang/GAPIT3 documentation built on March 6, 2025, 2:21 a.m.