library("MSnbase")
library("pRoloc")
csvfileA1 <- "../../inst/extdata/Shin2019ExpA1_RAWData.csv"
csvfileA2 <- "../../inst/extdata/Shin2019ExpA2_RAWData.csv"
csvfileA3 <- "../../inst/extdata/Shin2019ExpA3_RAWData.csv"
csvfileB1 <- "../../inst/extdata/Shin2019ExpB1_RAWData.csv"
csvfileB2 <- "../../inst/extdata/Shin2019ExpB2_RAWData.csv"
csvfileB3 <- "../../inst/extdata/Shin2019ExpB3_RAWData.csv"
csvfileC1 <- "../../inst/extdata/Shin2019ExpC1_RAWData.csv"
csvfileC2 <- "../../inst/extdata/Shin2019ExpC2_RAWData.csv"
csvfileC3 <- "../../inst/extdata/Shin2019ExpC3_RAWData.csv"
markercsv <- read.csv(file = "../../inst/extdata/Shin2019newMarkers.csv")
csvfile <- c(csvfileC3, csvfileC2, csvfileC1, csvfileB3, csvfileB2, csvfileB1,
csvfileA1, csvfileA2, csvfileA3)
csv <- read.csv(csvfile)
Shin2019MitoControlrep1 <- readMSnSet2(file = csvfile[7], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoControlrep2 <- readMSnSet2(file = csvfile[8], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoControlrep3 <- readMSnSet2(file = csvfile[9], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoGcc88rep1 <- readMSnSet2(file = csvfile[1], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoGcc88rep2 <- readMSnSet2(file = csvfile[2], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoGcc88rep3 <- readMSnSet2(file = csvfile[3], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoGol97rep1 <- readMSnSet2(file = csvfile[4], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoGol97rep2 <- readMSnSet2(file = csvfile[5], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoGol97rep3 <- readMSnSet2(file = csvfile[6], ecol = 22:32, skip = 0, fnames = 1)
Shin2019MitoControlrep1 <- filterNA(Shin2019MitoControlrep1)
Shin2019MitoControlrep2 <- filterNA(Shin2019MitoControlrep2)
Shin2019MitoControlrep3 <- filterNA(Shin2019MitoControlrep3)
Shin2019MitoGcc88rep1 <- filterNA(Shin2019MitoGcc88rep1)
Shin2019MitoGcc88rep2 <- filterNA(Shin2019MitoGcc88rep2)
Shin2019MitoGcc88rep3 <- filterNA(Shin2019MitoGcc88rep3)
Shin2019MitoGol97rep1 <- filterNA(Shin2019MitoGol97rep1)
Shin2019MitoGol97rep2 <- filterNA(Shin2019MitoGol97rep2)
Shin2019MitoGol97rep3 <- filterNA(Shin2019MitoGol97rep3)
Shin2019MitoControlrep1 <- updateSampleNames(Shin2019MitoControlrep1, 1)
Shin2019MitoControlrep2 <- updateSampleNames(Shin2019MitoControlrep2, 2)
Shin2019MitoControlrep3 <- updateSampleNames(Shin2019MitoControlrep3, 3)
Shin2019MitoGcc88rep1 <- updateSampleNames(Shin2019MitoGcc88rep1, 1)
Shin2019MitoGcc88rep2 <- updateSampleNames(Shin2019MitoGcc88rep2, 2)
Shin2019MitoGcc88rep3 <- updateSampleNames(Shin2019MitoGcc88rep3, 3)
Shin2019MitoGol97rep1 <- updateSampleNames(Shin2019MitoGol97rep1, 1)
Shin2019MitoGol97rep2 <- updateSampleNames(Shin2019MitoGol97rep2, 2)
Shin2019MitoGol97rep3 <- updateSampleNames(Shin2019MitoGol97rep3, 3)
Shin2019 <- MSnSetList(list(Shin2019MitoControlrep1, Shin2019MitoControlrep2, Shin2019MitoControlrep3,
Shin2019MitoGcc88rep1, Shin2019MitoGcc88rep2, Shin2019MitoGcc88rep3,
Shin2019MitoGol97rep1, Shin2019MitoGol97rep2, Shin2019MitoGol97rep3))
Shin2019 <- lapply(Shin2019, function(x) normalise(x, "sum"))
## Experimental data to add
experiment <- new("MIAPE",
lab = "Medical Research Council, Laboratory for Molecular Biology",
name = "John Shin",
contact = "Sean Munro",
email = "sean@mrc-lmb.cam.ac.uk",
samples = list(
species = "Human HEK 293T",
operator = "John Shin"
),
title = "Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers",
abstract = "Intracellular traffic between compartments of the secretory and endocytic pathways is mediated by
vesicle-based carriers. The precise and complete proteomes of carriers destined for many
organelles are ill-defined because the vesicular intermediates are transient, low-abundance and
difficult to purify. Here, we combine vesicle relocalisation with organelle proteomics and Bayesian
analysis to define the content of different endosome-derived vesicles destined for the trans-Golgi
network (TGN). The golgin coiled-coil proteins golgin-97, golgin-245 and GCC88, shown previously
to capture endosome-derived vesicles at the TGN, were individually relocalised to mitochondria
and the content of subsequently re-routed vesicles was determined by organelle proteomics. Our
findings revealed 45 integral and 51 peripheral membrane proteins re-routed by golgin-97,
evidence for a distinct class of vesicles shared by golgin-97 and GCC88, and various cargoes
specific to individual golgins. These results illustrate a general strategy for analysing intracellular
sub-proteomes by combining acute cellular re-wiring with high-resolution spatial proteomics.",
pubMedIds = "",
url = "",
instrumentModel = "Q Exactive HF-X",
instrumentManufacturer = "ThermoScientific",
ionSource = "",
analyser = "Orbitrap",
detectorType = "Orbitrap",
softwareName = "MaxQuant ",
collisionEnergy = "",
dateStamp = "16 March 2020"
)
## Expression data
e <- lapply(Shin2019, exprs)
## Experiment info
pd <- list(length = length(Shin2019))
for (j in seq_along(Shin2019)) {
toName <- paste0(colnames(e[[j]])[1:11])
colnames(e[[j]]) <- toName
pd[[j]] <- data.frame(toName,
row.names=colnames(e[[j]]))
pd[[j]] <- new("AnnotatedDataFrame", pd[[j]])
}
## feature data
fd <- list(length = length(Shin2019))
for (j in seq_along(Shin2019)) {
fd[[j]] <- rownames(e[[j]])
fd[[j]] <- as.data.frame(fd[[j]])
markerdata <- as.data.frame(markercsv)
rownames(markerdata) <- markercsv[,1]
fd[[j]]$markers <- "unknown"
rownames(fd[[j]]) <- rownames(Shin2019[[j]])
fd[[j]][rownames(fd[[j]])[rownames(fd[[j]]) %in% rownames(markerdata)], "markers"] <-
markerdata[rownames(fd[[j]])[rownames(fd[[j]]) %in% rownames(markerdata)],2]
fd[[j]] <- new("AnnotatedDataFrame", fd[[j]])
}
process <- new("MSnProcess",
processing=c(
paste("Loaded on ",date(),".",sep=""),
paste("median Normalisation")),
normalised=TRUE)
Shin2019MitoControlrep1 <- new("MSnSet",
exprs = e[[1]],
phenoData = pd[[1]],
experimentData = experiment,
featureData = fd[[1]])
Shin2019MitoControlrep2 <- new("MSnSet",
exprs = e[[2]],
phenoData = pd[[2]],
experimentData = experiment,
featureData = fd[[2]])
Shin2019MitoControlrep3 <- new("MSnSet",
exprs = e[[3]],
phenoData = pd[[3]],
experimentData = experiment,
featureData = fd[[3]])
Shin2019MitoGcc88rep1 <- new("MSnSet",
exprs = e[[4]],
phenoData = pd[[4]],
experimentData = experiment,
featureData = fd[[4]])
Shin2019MitoGcc88rep2 <- new("MSnSet",
exprs = e[[5]],
phenoData = pd[[5]],
experimentData = experiment,
featureData = fd[[5]])
Shin2019MitoGcc88rep3 <- new("MSnSet",
exprs = e[[6]],
phenoData = pd[[6]],
experimentData = experiment,
featureData = fd[[6]])
Shin2019MitoGol97rep1 <- new("MSnSet",
exprs = e[[7]],
phenoData = pd[[7]],
experimentData = experiment,
featureData = fd[[7]])
Shin2019MitoGol97rep2 <- new("MSnSet",
exprs = e[[8]],
phenoData = pd[[8]],
experimentData = experiment,
featureData = fd[[8]])
Shin2019MitoGol97rep3 <- new("MSnSet",
exprs = e[[9]],
phenoData = pd[[9]],
experimentData = experiment,
featureData = fd[[9]])
##
plot2D(Shin2019MitoControlrep1)
## Phenodata
pData(Shin2019MitoControlrep1)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoControlrep1)$replicate <- rep(c(1), each = 11)
pData(Shin2019MitoControlrep2)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoControlrep2)$replicate <- rep(c(2), each = 11)
pData(Shin2019MitoControlrep3)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoControlrep3)$replicate <- rep(c(3), each = 11)
pData(Shin2019MitoGcc88rep1)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoGcc88rep1)$replicate <- rep(c(1), each = 11)
pData(Shin2019MitoGcc88rep2)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoGcc88rep2)$replicate <- rep(c(2), each = 11)
pData(Shin2019MitoGcc88rep3)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoGcc88rep3)$replicate <- rep(c(3), each = 11)
pData(Shin2019MitoGol97rep1)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoGol97rep1)$replicate <- rep(c(1), each = 11)
pData(Shin2019MitoGol97rep2)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoGol97rep2)$replicate <- rep(c(2), each = 11)
pData(Shin2019MitoGol97rep3)$fraction <- c("Nuc", "1000g", "3000g", "5000g", "9000g", "12000g", "15000g", "30000g", "79000g", "120000g", "SN")
pData(Shin2019MitoGol97rep3)$replicate <- rep(c(3), each = 11)
## checks
stopifnot(length(pData(Shin2019MitoControlrep1)$replicate) == ncol(e[[1]])) # check columns and experiments match
stopifnot(length(pData(Shin2019MitoGcc88rep1)$replicate) == ncol(e[[4]])) # check columns and experiments match
stopifnot(length(pData(Shin2019MitoGol97rep3)$replicate) == ncol(e[[9]])) # check columns and experiments match
Shin2019MitoControlrep1@processingData <- process
Shin2019MitoControlrep2@processingData <- process
Shin2019MitoControlrep3@processingData <- process
Shin2019MitoGcc88rep1@processingData <- process
Shin2019MitoGcc88rep2@processingData <- process
Shin2019MitoGcc88rep3@processingData <- process
Shin2019MitoGol97rep1@processingData <- process
Shin2019MitoGol97rep2@processingData <- process
Shin2019MitoGol97rep3@processingData <- process
stopifnot(validObject(Shin2019MitoControlrep1))
stopifnot(validObject(Shin2019MitoGcc88rep1))
stopifnot(validObject(Shin2019MitoGol97rep1))
save(Shin2019MitoControlrep1, file="../../data/Shin2019MitoControlrep1.rda",
compress = "xz", compression_level = 9)
save(Shin2019MitoControlrep2, file="../../data/Shin2019MitoControlrep2.rda",
compress = "xz", compression_level = 9)
save(Shin2019MitoControlrep3, file="../../data/Shin2019MitoControlrep3.rda",
compress = "xz", compression_level = 9)
save(Shin2019MitoGcc88rep1, file="../../data/Shin2019MitoGcc88rep1.rda",
compress = "xz", compression_level = 9)
save(Shin2019MitoGcc88rep2, file="../../data/Shin2019MitoGcc88rep2.rda",
compress = "xz", compression_level = 9)
save(Shin2019MitoGcc88rep3, file="../../data/Shin2019MitoGcc88rep3.rda",
compress = "xz", compression_level = 9)
save(Shin2019MitoGol97rep1, file="../../data/Shin2019MitoGol97rep1.rda",
compress = "xz", compression_level = 9)
save(Shin2019MitoGol97rep2, file="../../data/Shin2019MitoGol97rep2.rda",
compress = "xz", compression_level = 9)
save(Shin2019MitoGol97rep3, file="../../data/Shin2019MitoGol97rep3.rda",
compress = "xz", compression_level = 9)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.